Partial CO₂ Reduction in Amorphous Cylindrical Silica Nanopores Studied with Reactive Molecular Dynamics Simulations

Tran Thi Bao Le, † Alberto Striolo,* ‡§ and David R. Cole‡

†Department of Chemical Engineering, University College London, London WC1E 6BT, United Kingdom
‡School of Earth Sciences, Ohio State University, Columbus, Ohio 43210, United States

ABSTRACT: It is known that pore confinement affects the structure and transport properties of fluids. It has also been shown that confinement can affect the equilibrium composition of a reactive system. Such effects could be related to the possible abiotic hydrocarbon synthesis in deep-sea hydrothermal vents, especially when the CO₂ methanation reaction occurs within nanopores. In an attempt to identify possible rate-limiting steps of such a reaction, we report here molecular dynamics simulations conducted implementing the reactive force field. The reaction is considered within a cylindrical nanopore carved out of amorphous silica. Within the constraints of our simulations, which were conducted for 5 ns, no CH₄ molecules were detected in the temperature range of 400−1000 K, suggesting that the silica pore hinders the complete CO₂ reduction. This is consistent with the fact that silica is not an effective catalyst for CO₂ methanation. Our simulations, in agreement with literature reports, suggest that the silica pore surface facilitates the partial reduction of CO₂ to CO, which, within the conditions of our study, is found to be a stable product within the silica nanopores simulated. Analysis of the reaction products suggests that, although C=C bonds did not form, fragments reminiscent of carboxylic acids and formate were observed. Because these compounds are part of the biological Krebs cycle, our results suggest that confinement could provide prebiotic precursors of core metabolic pathways. Our results could be useful for further developing applications in which catalysts are designed to promote CO₂ activation, for example, the one-step thermolysis of CO₂.

1. INTRODUCTION

Besides dramatic influences on the structure of fluids,1−5 their transport properties,6−10 and mutual solubility,11−17 nanoconfinement has been shown to affect chemical equilibria. The effects of confinement on chemical reaction equilibria for model, reversible reactions in slit-shaped pores were first reported by Borówko et al.18,19 while Turner et al.20−23 reported molecular-level simulation studies for realistic, reversible reactions in carbon micropores and carbon nanotubes. Santiso et al.24 implemented plane wave pseudopotential density functional theory to simulate the rotational isomerization of 1,3-butadiene and the decomposition of formaldehyde in slit-shaped pores formed by two parallel graphene sheets. Their results showed that confinement affects the potential energy profile for the isomerization of 1,3-butadiene, whereas the proximity of the pore surface reduces somewhat the activation energy. Turner et al.25 predicted the rate constant for the hydrogen iodide decomposition reaction [2H₂I → H₂ + I₂] in slit-shaped carbon pores and in carbon nanotubes by combining the transition-state theory formalism with reactive Monte Carlo (RxMC) simulations.26,27 The results suggested that the reaction rate in (8,8) carbon nanotubes increased by a factor of 47 compared to that observed for bulk fluids at the same thermodynamic conditions. These results illustrate the large effects that confinement and fluid−wall intermolecular forces can exert on the rate of a chemical reaction and on the equilibrium composition of a reactive system.

Building on this literature, Peng et al.28 simulated the ammonia synthesis reaction in MCM-41 and pillared clays. Hansen et al.29 quantified the influence of silicalite-1 pores on the reaction equilibria of propene metathesis reactions. Li et al.30 studied the NO dimerization reaction in carbon slit nanopores in equilibrium with a bulk reservoir. In general, it has been reported that reaction rates in confinement differ from those in bulk because the favorable wall−fluid interactions can increase the reactant density and enhance the formation of transition-state complexes. Such effects depend on pore size, pore chemistry, and pore morphology.31 For example, Furmaniak et al.31 showed that, within activated carbons, the decreasing pore size may increase or decrease the reaction yield, depending on the relative adsorption energy of reactants and products. The computational studies just summarized focused on pore size effects on the equilibrium conversion by employing the RxMC algorithm, widely used to simulate chemically reacting systems.23 Our group also

Received: August 1, 2019
Revised: September 23, 2019
Published: September 25, 2019
implemented this approach to quantify the effect of confinement on the equilibrium composition for the CO\textsubscript{2} methanation reaction.32

\[
\text{CO}_2 + 4\text{H}_2 \rightleftharpoons \text{CH}_4 + 2\text{H}_2\text{O}
\]

We compared the equilibrium composition of a reactive system composed of CO\textsubscript{2} and H\textsubscript{2} in confinement vs. that in the bulk phase at similar thermodynamics conditions. The study considered the possibility of abiotic hydrocarbon synthesis in sub-seafloor hydrothermal vents and related discussions.33,34 The abiotic synthesis of organic compounds involves the reduction of inorganic carbon sources such as CO\textsubscript{2} and CO by H\textsubscript{2}, which could derive from either the oxidation of ferrous iron in basalt or the serpentinization of ultramafic minerals (for example, olivine and pyroxene).35,36 As an example of a recent contribution to this discussion, Ménéz et al.37 reported evidence for the occurrence of aromatic amino acids formed abiotically at depth in oceanic crust. These authors suggest that the amino acid formation could have been catalyzed by an iron-rich saponite clay. It appears that iron catalysts play an important role. In fact, Muchowska et al.38 recently showed that ferrous iron promotes a purely chemical reaction network by which CO\textsubscript{2} reduction yields many intermediates of the biological Krebs cycle. In our prior analysis, reaction 1 was considered to occur in contact with slit-shaped pores carved out of β-cristobalite silica crystal. The reaction equilibrium composition was found to strongly depend on nanopore size and chemical features of the pore surface, and several scenarios were identified according to which the equilibrium CH\textsubscript{4} molar fraction in confinement exceeded that expected in bulk systems. The kinetics of the reaction were not considered.

Compared to the RxMC approach, reactive molecular dynamics (MD) simulations allow researchers to monitor the kinetics of a chemical reaction and to identify the role of various catalysts. For example, reactive MD simulations conducted within the reactive force field (ReaxFF) formalism were successfully employed to describe complex reactive chemical systems.39,40 In the ReaxFF parameterization, the bond order concept is implemented to determine interatomic interactions between all atoms within a chemical system. Therefore, when appropriately parameterized, ReaxFF provides an accurate description of the formation and dissociation of covalent bonds during dynamic simulations. ReaxFF captures short-lived molecular fragments and intermediates, which may not be considered in the RxMC approach, and could be difficult to detect, even experimentally. ReaxFF parameters are obtained by fitting against training datasets containing quantum mechanical simulation results and experimental data. Accurate ReaxFF parameterizations have been applied to a wide range of reactive systems, including combustion processes,41–44 the shock-induced chemistry of high-energy materials,45–47 nanomaterials,48–52 catalysts,53–56 and also electrochemical phenomena.57–59 Recently, we found that the ReaxFF parameterization can predict structural and transport properties of nonreactive pure fluids (CH\textsubscript{4}, CO\textsubscript{2}, H\textsubscript{2}O, and H\textsubscript{2}).60 However, our results showed that the agreement with both classical simulations and experiments depends strongly on the fluid considered and on the thermodynamics conditions simulated.

A better understanding of the effect of confinement on both the composition and the kinetics of reactive systems could benefit many sectors, including the chemical industry, which makes large use of silica-based micro- and mesoporous materials as catalysts. Synthetic zeolites, for instance, are widely used for petroleum refining and other applications by the petrochemical industry.51,62 As another example, mesoporous MCM-41 materials have recently been successfully applied as a catalyst for the three-component Strecker reaction.63

Within this background, the main objective of the present study is to investigate, using the ReaxFF MD simulation approach, whether silica nanopores could promote the CO\textsubscript{2} methanation reaction (reaction 1) at conditions consistent with those in our prior RxMC simulations.32 This investigation is motivated by the observation that the equilibrium composition of systems that undergo reaction 1 is expected to favor CH\textsubscript{4} production at low T, but due to the significant kinetic limitations of the eight-electron reduction of CO\textsubscript{2} to CH\textsubscript{4},64 active catalysts are required for conducting such a reaction industrially at acceptable rates and yields. A series of catalysts based on group VIII metals such as Ru,65 Ni,66,67 Pd,68 and Co69 supported on porous materials such as TiO\textsubscript{2}, Al\textsubscript{2}O\textsubscript{3}, CeO\textsubscript{2}, MgO, and zeolite have been tested and applied for CO\textsubscript{2} methanation.70–73 None of these catalysts nor iron-rich saponite clays are considered in the present manuscript. It should also be noted that the time scales that can be investigated using the ReaxFF formalism are extremely short compared to typical experimental setups, and especially so when compared to chemical transformations that might occur in the subsurface during geological times.

The rest of the manuscript is organized as follows: in Section 2, we first outline the ReaxFF formalism and then describe the simulation methodology implemented, including details on the solid support used to conduct the simulations. In Section 3, we present the results, starting from the expected equilibrium conversion for the CO\textsubscript{2} methanation (reaction 1) based on thermodynamics calculations, followed by a detailed discussion of the reactive MD simulation results, first in the bulk and then in the amorphous silica nanopores. A discussion follows where we relate the present results to our prior RxMC calculations. Finally, in Section 4, we summarize our main conclusions.

2. COMPUTATIONAL DETAILS

2.1. Reactive Force Field (ReaxFF) Parameterization. ReaxFF is an empirical force field based on a chemical bond order/bond length relationship that allows bonds to dynamically dissociate and form. In the ReaxFF formalism, the instantaneous bond order, which is calculated and updated at every iteration from interatomic distances, is used to define all of the connectivity-dependent interactions (for example, valence and torsion angles). The energies and forces associated with all bonded interactions disappear once the bonds dissociate. Nonbonded interactions (van der Waals and Coulomb) between all atom pairs are calculated from distance-corrected Morse and Coulomb potentials and are shielded at short distances to prevent excessive repulsions. In ReaxFF, the polarization of charges within molecules is obtained from the electronegativity equalization method,74 which is a geometry-dependent charge calculation approach. The general expression for the energy of the system, \(E_{\text{system}}\) is given by

\[
E_{\text{system}} = E_{\text{bond}} + E_{\text{val}} + E_{\text{coul}} + E_{\text{over}} + E_{\text{under}} + E_{\text{ip}} + E_{\text{vdwals}} + E_{\text{coulomb}}
\]

DOI: 10.1021/acs.jpcc.9b07344
The partial contributions to the total energy include bond energy (E_{bond}), valence angle energy (three-body) (E_{angle}), torsion angle energy (four-body) (E_{tors}), overcoordination energy penalty (E_{over}), undercoordination stability (E_{under}), lone-pair energy (E_{lp}), nonbonded van der Waals (E_{vdwaals}), and Coulomb (E_{coulomb}) interactions.

We have chosen a recently published ReaxFF potential, which was developed for the Si/C/H/O system involved in the oxidation of SiC.75 This parameter set is the combination of existing ReaxFF descriptions for hydrocarbons76 and silicon/silicon oxides.77,78 The ReaxFF parameters used were extracted from previously used Si/C, Si/O, Si/Si, and Si/H quantum data for silicon,79 silicon oxide,77 and poly(dimethylsiloxane) ReaxFF applications.80 Details on the training of these datasets are provided by Newsome and co-workers.75 It has been reported that the chosen Si/C/H/O parameters are capable of describing reactions among hydrocarbons, as well as their reactions with silicon carbide, silicon oxides, diamond, and graphite materials.75

2.2. Simulation Methodology. All of the molecular dynamics (MD) simulations reported here were conducted using the ReaxFF reax/c code as implemented in the large-scale atomic/molecular massively ParallelSimulator package, version 20180818.81,82

The system was simulated as confined within a realistic cylindrical pore of diameter ~ 16 Å carved out of amorphous silica. A detailed description of the procedure implemented during the preparation of the cylindrical silica pore has been presented in a previous study,83 in which we studied the transport properties of confined water–propane systems, using nonreactive force fields. In Figure 1A, we provide a schematic of the pore, which is found within a $57.28 \times 57.28 \times 57.28$ Å simulation box with periodic boundary conditions along the three directions. The pore is parallel to the X axis of the simulation box. Because of periodic boundary conditions, the pore is infinitely long along the X direction. The surface of the cylindrical pore was saturated with hydroxyl groups and hydrogen atoms, yielding a hydroxyl density of 3.8/nm2. This is consistent with experimental measurements on flat amorphous silica surfaces.84 The atoms within the silica substrate were fixed throughout the simulations, except for those atoms at the pore surface in contact with the fluid molecules.

In all simulations, a feed gas composed of CO$_2$ and H$_2$ was inserted in the pore, and then ReaxFF simulations were conducted to determine changes in system composition as simulation time progressed. Experimental evidence demonstrates that the H$_2$/CO$_2$ ratio should not be lower than 4 to obtain high CH$_4$ selectivity and avoid carbon deposition during methanation.85 Therefore, in all cases considered here, the feed gas consists of CO$_2$ and H$_2$ with a molar ratio of H$_2$/CO$_2$ = 4. This highly reducing composition was previously used to study the effect of confinement on the equilibrium composition implementing the RxMC approach.32 A snapshot for the initial configuration of a system containing 50 CO$_2$ and 200 H$_2$ molecules confined in the amorphous silica cylindrical pore is shown in Figure 1B. Increasing the density of the reactants within the pore is expected to favor CO$_2$ methanation, based on results from our prior RxMC approach and also based on Le Chatelier’s principle.

The simulations were conducted within the constraints of constant number of atoms, constant volume, and constant temperature, implementing the Nosé–Hoover thermostat with a temperature damping constant of 10 fs. The cutoff distance for electrostatic and van der Waals interactions is 10 Å. Although it is highly recommended to use tail corrections when simulating fluids in microporous materials,86 the ReaxFF formalism as implemented in the present study was not trained to fit long-range London dispersion forces. In addition, Liu et al.87 reported that the dispersion corrections have a negligible effect on the description of chemical reactions.

The system temperature was set within the range from 400 to 1000 K. The simulations were performed at 100 K temperature intervals, to investigate how the reaction products vary as a function of temperature. A time step of 0.25 fs was necessary to conserve the system energy at the chosen temperatures. At each temperature, we conducted 15 independent simulations to quantify the statistical reliability of the collected data. Each of the 15 simulations has a unique starting configuration and was initially equilibrated at low temperature and then heated to the target temperature.

The total simulation time for each system was determined by the extent of carbon dioxide reduction: simulations were terminated when no further change in system composition was observed within a simulated time of 5 ns. The kinetics of decomposition was studied by averaging the results from 15 simulations.

Figure 1. Snapshots of the initial system configuration from axial view (A) and side view (B). The yellow, red, cyan, and white spheres represent Si, O, C, and H atoms, respectively.
The bond, species, and trajectory data extracted from the simulation output files were analyzed to track the number of molecular species formed during the simulations. A bond order cutoff of 0.3 was used for all bond types to identify the molecular species formed during the simulations. It has been shown that the bond order cutoff does not affect the final products obtained during an MD simulation but only the formation of intermediates. If the cutoff is too small, the simulation could identify too many bonds, affecting the computational efficiency; on the other hand, too large a cutoff will yield fragmented molecules within the simulation. The 0.3 value has been widely used in the literature, yielding reliable results. The thermodynamic equilibrium for the three reactions 1, 3, and 4 can be quantified via the calculation of the equilibrium constants (K) by van’t Hoff equation:

\[
\frac{\mathrm{d} \ln K}{\mathrm{d} T} = \frac{\Delta H^\circ_{\text{rxn}}}{RT^2}
\]

(5)

The van’t Hoff equation, shown in eq 5, uses as input data the standard enthalpy of reaction, \(\Delta H^\circ_{\text{rxn}}\), for each of the molecular compounds, which is a function of temperature. Obtaining the thermodynamic parameters for the reacting components from the literature, we calculated the equilibrium constants as a function of temperature. The results, shown in Figure 2, are consistent with those reported by Gao et al. It should be noted that in our prior work we calculated equilibrium quotients from the RxMC simulation results, rather than equilibrium constants, because the reaction was occurring within narrow pores, which affects the equilibrium composition and not the equilibrium constant. The results in Figure 2 are consistent with those reported previously, when reaction 1 occurs in the bulk.

The results in Figure 2 show that both CO₂ and CO methanation reactions (reactions 1 and 4, respectively) have high equilibrium constants in the temperature range of 400–800 K, while the water gas shift reaction (reaction 3) is characterized by lower K’s at all temperatures. Gao et al. obtained the equilibrium composition for CO₂ methanation implementing the total Gibbs free-energy minimization method. We used the Aspen Plus software to calculate the system composition as a function of temperature when reactions 1, 3, and 4 occur. In Figure 3, we report the equilibrium product mole fraction percent in the temperature range from 400 to 1000 K. The results in Figure 3c demonstrate that at moderate temperatures (400–800 K) CO methanation is favored in the bulk. At these conditions, the products mainly contain CH₄ and H₂O. When the temperature exceeds 800 K, the conversion of CO₂ into CH₄ is difficult to be achieved. In contrast, the conversion of CO₂ via reaction 3 (the water gas shift reaction) increases with an increase in temperature (Figure 3b). This is due to the endothermic nature of reaction 3, which is favored at high temperature. Reactions 3 and 4 may simultaneously occur during CO₂ methanation, reaction 1. Thus, irrespective of pressure, lower temperature favors CH₄ formation. However, it is well known that, due to kinetic barriers, the use of a catalyst is essential to carry out the reaction at low temperatures.

3. RESULTS AND DISCUSSION

3.1. Thermodynamic Analysis: Bulk System

The methanation of CO₂ as represented by reaction 1 is a reversible and strongly exothermic reaction (\(\Delta H = -165\) kJ/mol), which is favored at low temperature, high pressure, and high hydrogen fugacity. The CO₂ methanation is the combination of the endothermic reversed water gas shift reaction (reaction 3) and of the exothermic CO methanation (reaction 4), which are explicitly described as:

\[
\begin{align*}
\text{H}_2 + \text{CO}_2 &\rightarrow \text{CO} + \text{H}_2\text{O} ; \Delta H = 41.2 \text{ kJ/mol} \quad (3) \\
3\text{H}_2 + \text{CO} &\rightarrow \text{CH}_4 + \text{H}_2\text{O} ; \Delta H = -206.1 \text{ kJ/mol} \quad (4)
\end{align*}
\]

The thermodynamic equilibrium for the three reactions 1, 3, and 4 can be quantified via the calculation of the equilibrium constants (K) by van’t Hoff equation:

The system composition as a function of simulation time is shown in Figure 4. Analyzing the results, we observed some intermediates present for relatively long times: 1 CH₃OH and 1–2 HCHO and CH₂O₂ molecules were found during the first 2 ns of the simulations. These compounds remained in the simulated bulk systems at steady states. It should be noted that CH₂O₂ and HCHO play a key role in processes such as the oxidation of organic molecules and combustion. CH₃OH is one of the important intermediates observed during the conversion of CH₃ radicals into HCHO molecules in the gas explosion process.

The distribution of major reactants and products as a function of simulation time for the bulk reaction 1 is reported in Figure 5. Although some of these compounds are not experimentally stable at 2000 K, the simulation results suggest that, at the conditions considered, the water gas shift reaction (reaction 3) dominates, because of the high temperature (2000 K). Differences between the results of Figure 5 and those predicted by Figure 3 are largely ascribed to the fact that for...
the thermodynamics calculations of Figure 3, oxygen-containing compounds such as formaldehyde, methanol, formic acid, and others were not considered. The product composition shown in Figure 5 reflects the high CO content, which is also consistent with the thermodynamics calculations shown in Figure 3. In our simulations, the number of both CO and CH₄ molecules increased as the reaction proceeded. However, the amount of CO was found to be much larger than that of CH₄. After ~71 ns of simulations, our results show that the amount of CH₄ reached a constant value, and steady states were achieved.

In Figure 6, we summarize the compositions of the bulk system, as predicted by the ReaxFF MD simulations conducted at 2000 K. Besides CH₄ and CO, which are the main products, some byproducts are present, albeit in small amounts. It should be noted that the results in Figure 6 reflect the averages obtained from 15 independent bulk simulations (each of up to 100 ns). Each simulation was interrupted when the system composition did not change for at least 60 ns. Once stable system compositions were achieved, each simulation was continued for an additional 10–20 ns to further ensure that the final composition would not change. The results, shown in Figure 6, yield an average CH₄ mole fraction of ~2%, which is larger than that of less than 0.01% predicted from the total Gibbs free-energy minimization method shown in Figure 3a. These results confirm that the ReaxFF parameterization is able to describe CO₂ reduction. The deviation in system composition predicted by the ReaxFF approach compared to that by the thermodynamic analysis is possibly due to the fact that the ReaxFF allows the formation of several intermediates, which are not considered in the thermodynamic analysis of Section 3.1.

3.3. ReaxFF Simulations of Partial CO₂ Reduction in Nanopores. In Figure 7, we report typical simulation output data as observed within a silica pore, wherein the evolution of the system composition is plotted as a function of the simulation time. This simulation was conducted at 700 K, because thermodynamic analysis displayed in Figure 3 indicated that at this temperature, methane production is...
thermodynamically favored, and this temperature may be high enough to overcome possible kinetic barriers. However, as shown in Figure 7, no CH₄ was found within the time scale of the simulations. The number of CO₂ molecules decreased gradually from 50 to 38, while 11 CO molecules were formed within the first 5 ps of the simulation. The number of CO₂ and CO molecules in the system remained almost constant after 5 ps. Meanwhile, the number of H₂ molecules decreased steadily; 51 H₂ molecules were consumed when the reaction proceeded to 5 ns. The number of H₂O molecules produced during the reaction increased slightly; 14 H₂O molecules were obtained at the end of the 5 ns simulation. The results suggest that, within the silica nanopore, CO₂ is reduced to CO quickly at the beginning of the simulation, but then the reaction ceases, at least within the time frame accessed by our simulations, while H₂ continues to be consumed, in part, to yield H₂O.

In the initial stages of the simulations, we observed numerous intermediate species, including *COOH, *CHO, HCHO, and CH₂O₂, which were present for short simulation times and only in small quantities (see Figure 8). In light of the recent report by Muchowska et al., we find it interesting that some of the intermediates shown in Figure 8 represent fragments of carboxylic acids, formate, and other metabolic precursors. It is possible that, in the presence of iron-based catalysts, the spontaneous reduction of CO₂ within the system considered here could yield prebiotic precursors of core metabolic pathways. However, in our system, no catalyst was present. Returning to the analysis of the system composition as a function of simulation time (Figure 8), we note that *OH and *H free radicals were observed throughout the simulations. The decomposition of CO₂ into CO generated short-lived *O radicals, which combined with *H radicals to form *OH radicals. The dissociation of H₂ produced *H radicals. Free *OH and *H radicals were also generated from the dissociation of silanol groups on the silica surface. The amount of *OH radicals remained low (1 or 2 after 5 ps), but 20 *H radicals were observed when the simulation was interrupted at 5 ns (no additional CO production was observed when slightly longer simulations, up to 7 ns, were conducted). During the course of our simulations, it was observed that most of the *H free radicals reacted with *OH to yield H₂O molecules.

We conducted similar simulations within a range of temperature from 400 to 1000 K. At each temperature, the system composition was found to become stable after a
transient period. In Figure 9, we report the composition of the reactive systems once the composition did not change further (within the simulation times allowed by the ReaxFF simulations within the computing resources available to us). For none of the simulations conducted, which initially contained 50 CO₂ and 200 H₂ molecules, methane generation was observed. The reactive systems were found to contain CO, H₂O, and an excess amount of CO₂ and H₂. Our results show that as the temperature increases from 400 to 600 K, the amount of unreacted CO₂ increased, while the amount of CO and H₂O present within the system decreased. The amount of unreacted H₂ did not change significantly in this temperature range, which supports the hypothesis that the CO₂ methanation did not occur as the temperature fell below 600 K. When the systems were heated up to 700 K, the excess reactant amount decreased, while that of the main products increased. At higher temperatures, the quantities of excess CO₂ and CO produced no longer changed significantly, up to 1000 K, indicating that the increase in temperature did not promote the formation of CO. In contrast, the amount of H₂O increased constantly as the temperature increased. An analysis of the molecular composition based on the simulation results shown in Figure 9 suggests that partial CO₂ reduction to CO occurs at temperatures of 700 K and above, although increasing the temperature above 700 K does not seem to strongly enhance the extent of the reduction.

Our results, summarized in Figure 9, suggest that the silica substrate does not function as a catalyst for reaction 1. At first, this result appears to be at odds with our prior findings, in which Le et al. using the RxMC approach, found that confinement can shift the equilibrium composition of reaction 1 toward methane generation. The predicted shift in the equilibrium composition toward enhanced methane formation within silica nanopores was due to the fact that the hydrophilic pore surface effectively removed water, one of the products, from the reactive environment, and that confinement effectively enhanced the pressure of the reacting system. Based on Le Chatelier’s principle, both these phenomena shift the equilibrium composition to higher CH₄ production. The RxMC approach did not consider the kinetics of the reaction, as only the equilibrium composition was sampled. The present study employs the ReaxFF formalism, which tracks the reaction kinetics, although reaching equilibrium might require prohibitive computing resources. The absence of CH₄ from the reaction products could simply be due to the fact that silica is not a catalyst for reaction 1. Future efforts shall explore the evolution of CO₂ reduction within iron-rich saponite clays, which were considered essential for the abiotic production of aromatic amino acids in a recent experiment by Ménez et al. To ensure that the ReaxFF MD simulations yield a structure of the confined fluid mixture similar to the one observed in our prior Monte Carlo simulations, in Figure 10, we report density profiles for H₂O, as well as other compounds, within the amorphous cylindrical silica pore. The density profile obtained for water (shown in the inset of Figure 10) is characterized by two pronounced peaks, which are near to the pore surface, indicating the strong adsorption of water on the surface. This is consistent with our prior results, although water is present in small amounts in the systems considered here. The positions of CO₂ and H₂ density peaks are approximately identical, which is consistent with those reported in our previous Monte Carlo simulations. While H₂ and CO occupy the entire pore volume yielding a more or less homogeneous distribution, CO₂ is found preferentially in proximity of the silica pore surface, where it can form hydrogen bonds with the –OH groups on the surface. It should be pointed out that the density profiles suggest that H₂ is somewhat depleted in the pore center, possibly because of its preferential adsorption on the pore surface. It is discussed later that this partition could directly affect the reaction mechanism.

Returning to Figure 9, the results, affected by rather large uncertainty, show very weak dependence on temperature. The results seem to suggest that CO₂ methanation did not occur within the silica nanopores when the temperature was below 700 K, within the constraints of our simulations. This could be due to several factors. It could be that computational limitations prevent us from achieving equilibrium. It could also be that, at the conditions considered, the reversed water gas shift (reaction 3) dominates. Increasing the temperature does not affect this scenario because, as documented in Figure 2, reaction 3 is characterized by lower K within the entire
temperature range considered. The results in Figure 3 suggest that low temperature promotes CO2 methanation, but, as is the case for industrial processes, it could be that such a reaction is kinetically limited, and therefore no CH4 generation was found in our simulations.

Comparing the composition of the reactive system in the bulk at 2000 K (Figures 4−6) versus that observed within the silica pores (Figures 8 and 9), it is noted that key intermediates such as *COOH, *CHO, HCHO, and CH2O2 are present throughout the process in the bulk but are only present for a short transient time (~50 ps) when the reaction occurs in the silica pore. Therefore, the lack of CH4 formation in confinement could be due to the inability of these intermediates to persist in proximity of the silica substrate. Although the results in Figure 9 do not reveal the formation of CH4 they show that CO2 is partially reduced to CO within the nanopores during our simulations. This observation could be of practical interest. It is in fact known that surface oxygen vacancies are the dominant defect in crystalline and amorphous silica.99 Surface oxygen vacancies promote the adsorption and activation of CO2 even in the absence of H2.100,101 For example, Jiang et al.102 recently reported on the one-step thermolysis of CO2 in the presence of metal oxide surfaces. They found that porous silica oxide materials with large specific surface areas (for example, SBA-15, MCM-41, commercial SiO2) enhance the rate of CO2 splitting into CO and O2. It was suggested that the surface oxygen vacancies in the redox metal could act as a catalyst for this reaction.

To test whether similar phenomena could occur for the system considered here, we conducted an additional test in which we removed H2 from the reactive system within the amorphous silica pores and ran ReaxFF simulations at the conditions described in Figure 9. We conducted these simulations in the temperature range of 400−1000 K. A typical evolution of the system composition is reported in Figure 11, which refers to a simulation conducted at 700 K. At the beginning of the simulation (0−3 ps), we observed some free radicals (*O, *H, *OH, and *COOH) released in relatively large amounts. However, after 100 ps, the quantities of *O, *H, and *OH no longer increased and no *COOH free radicals were observed. We observed that for the systems considered, the formation of CO was associated with the production of H2O molecules, albeit in small amounts, rather than O2. The amount of CO obtained at the end of the simulations as a function of temperature is shown in Figure 12. The results demonstrate that an appreciable amount of CO molecules formed even at much lower temperatures than those considered by Jiang et al.102 for the direct thermolysis of CO2 in the absence of H2. The hydrogen atoms required for the formation of H2O were obtained from the silica surface.

To visually quantify the effect of temperature on the results, we plot in Figure 12 the amount of CO obtained at simulation completion as a function of temperature. The results indicate that CO production increases as the temperature increases within the SiO2 nanopores of Figure 1. It is interesting to note that the quantity of CO obtained from the direct partial reduction of CO2 in confinement appears to be much larger than that obtained from the CO2 methanation (i.e., see Figure 9). Therefore, our results seem to suggest that the presence of hydrogen in large amounts could hinder CO formation within silica nanopores. This could be a consequence of the fact that increasing the density within the silica nanopore by the addition of H2 reduces the collision rate of CO2 against the silica surface (i.e., see density profiles in Figure 10). This observation is clearly at odds with the general recommendation to maintain the H2/CO2 ratio larger than 4 to achieve high CH4 selectivity in CO2 methanation reaction and avoid carbon deposition during methanation,75 although it should be pointed out that those recommendations are valid in the presence of catalytic materials.

While it is not surprising that amorphous silica is not an effective catalyst for CO2 reduction, the analysis of the simulation results can reveal the mechanisms responsible for this observation. We refer to the density profiles of H2 and CO2 within the silica nanopores tracked during the 700 K simulations, which are shown in Figure 10. It can be seen that although CO2 and H2 molecules distribute along the radial direction, perpendicular to the pore wall, the quantity of H2 molecules residing close to the surface is much larger than that of CO2, which supports the hypothesis that H2 prevents CO2 collisions with the surface.

To gain mechanistic insights into CO2 dissociation, as described by the ReaxFF MD simulations, we performed a bond order analysis.103 The CO2 molecules collide with the defective silica surface, which initiates the decomposition of CO2 to CO molecules and generates *O free radicals. When
only CO₂ molecules are present within the pore, their collision with the surface yields the dissociation of silanol groups from silica, generating \(^*\)H and \(^*\)OH free radicals. This creates the possibility for \(^*\)H radicals to combine with \(^*\)OH radicals, yielding H₂O. Both CO₂ splitting and CO oxidation (CO + 1/2O₂ = CO₂) occur simultaneously. In addition, CO molecules can contact \(^*\)OH radicals to yield short-lived \(^*\)COOH species, which are detected in the initial stages of our simulations. This radical is very active and has been considered a precursor for CO formation.\(^{104}\) As mentioned earlier, silica provides oxygen vacancies, which promote the CO₂ splitting into CO. It is possible that CO is not reactive enough under our simulation conditions to react with H₂ and yield CH₄.

4. CONCLUSIONS

It is known that confinement has an effect on many physical properties of fluids. In particular, our group has considered the possibility that confinement affects the equilibrium distribution of oxidized versus reduced carbon.\(^{105}\) In our prior contribution,\(^{32}\) we employed the RxMC approach to quantify the equilibrium composition of a system in which CO₂ came in contact with large amounts of H₂ in the presence of narrow hydrophilic silica-based pores. The results showed that, for the most part, because the pore surface effectively removed H₂O from the products, the system composition was biased toward producing more CH₄ than it would have been expected based on thermodynamics calculations conducted in the bulk. This paper probes the specific question—can the CO₂ reduction be driven entirely inside cylindrical amorphous silica nanopores? The results confirm that amorphous silica is not a catalyst for the reaction, as is widely known. A better catalytic substrate choice would be TiO₂, Fe₂O₃, or MgO, with some trace or minor Cr, Ni, or Co at the pore surface. All of these phases exist in oceanic crustal rocks. Future studies should consider these materials, in an attempt to connect simulation studies with experimental observations for methane seeps in marine hydrothermal vents.\(^{33,34}\) Aromatic amino acids formed abiotically at depth,\(^{35}\) and intermediates of the biological Krebs cycle observed during CO₂ reduction.\(^{36}\)

In summary, ReaxFF molecular dynamics simulations were employed to assess the potential partial reduction of CO₂ within cylindrical pores carved out of amorphous silica. Simulating the CO₂ methanation in the bulk phase at 2000 K shows the formation of CH₄ molecules, with a product composition generally consistent with thermodynamics calculations. ReaxFF MD simulations of pure CO₂ within the silica pores showed evidence of its partial reduction at moderate temperatures, yielding large amounts of CO. Analysis of these simulations showed that CO is produced directly from the collision of CO₂ with the silica surface, on which defective sites could enhance CO₂ activation. When the ReaxFF MD simulations were conducted for CO₂ in the presence of excess H₂ within the silica nanopores, partial reduction was observed, but no CH₄ was obtained at the conditions considered because the silica support reduces the concentration of some important intermediates, which seem to promote CO₂ reduction in the bulk. The results presented, and, in particular, the analysis of the reaction pathway, could be helpful for designing catalytic processes for the one-step thermolysis of CO₂. To be of relevance for quantifying the catalytic reduction of CO₂ in the presence of excess H₂, the study should be extended to materials containing appropriate catalysts, for example, an Fe olivine with minor amounts of transition or noble metals at the pore surface.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: a.striolo@ucl.ac.uk.

ORCID

Alberto Striolo: 0000-0001-6542-8065

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors acknowledge the financial support from the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0006878 (Division of Chemical Sciences, Geosciences, and Biosciences), Geosciences Program. Additional financial support was provided by the A. P. Sloan Foundation via the Deep Carbon Observatory administered by the Carnegie Institution for Science. A.S. acknowledges financial support from the Science4CleanEnergy consortium (S4CE), which is supported by the Horizon 2020 R&D programme of the European Commission, via grant No. 764810. Generous allocations of computing time were provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory, Berkeley, CA. NERSC is supported by the DOE Office of Science. The authors are also grateful to the University College London Research Computing Platforms Support (LEGION), for access to high-performance computing. The authors acknowledge stimulating discussions with Prof. John Shaw, whose sabbatical at University College London was partially supported by the Leverhulme Trust via grant agreement No. VP2-2017-023.

■ REFERENCES

(10) Chatlooth, S. M.; He, L.; Mamontov, E.; Melnichenko, Y. B. Effect of Carbon Dioxide and Nitrogen on the Diffusivity of Methane

(100) Pan, Y. X.; Liu, C. J.; Mei, D.; Ge, Q. Effects of Hydration and Oxygen Vacancy on CO₂ Adsorption and Activation on -Ga₂O₃(100). Langmuir 2010, 26, 5551–5558.