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ABSTRACT: The increased production of unconventional MD simulation setup KMC sotup
hydrocarbons emphasizes the need to understand the tran PENNEAN AN W

of uids through narrow pores. Although it is well-known th £ . o

con nement aects uids structure and transport, it is not yet[, %5 -'f?*” R . 1 Region 1: CH, close 10 surface

possible to quantitatively predict properties suchuas/dy as
a function of pore width in the range 06Q@ nm. Such pores |
are commonly found not only in shale rocks but also in a wige-
range of engineering materials, including catalysts. We propos
here a novel and computationallycient methodology to *[¢5
obtain accurate dision coe cient predictions as a function df
pore width for pores carved out of common materials, such’as

silica, alumina, magnesium oxide, calcite, and muscovite. We

implement atomistic molecular dynamics (MD) simulations to quaitiBtructure and transport within 5 nm-wide pores,

with particular focus on the dsion coecient within dierent pore regions. We then use these data as input to a bespoke
stochastic kinetic Monte Carlo (KMC) model, developed to preiidtansport in mesopores. The KMC model is used to
extrapolate theuid di usivity for pores of increasing width. We validate the approach against atomistic MD simulation results
obtained for wider pores. When applied to supercritical methane in slit-shaped pores, our methodology yields data within 10%
of the atomistic simulation results, with stgnit savings in computational time. The proposed methodology, which combines

the advantages of MD and KMC simulations, is used to generate a digital libraryusivityeadigases as a function of pore

chemistry and pore width and could be relevant for a number of applications, from the prediction of hydrocarbon transport in
shale rocks to the optimization of catalysts, when suithggeractions impact transport.

Reglon 3: CH, close 10 surface

1. INTRODUCTION properties that dee shale permeability are mainly porosity

The Energy Information Administration (EIA) projects a Zs%pore Stze distribution PSD), organic content _(% of t_otal
increase in world energy use between 2015 andi2@410.7, organic carbon TQC)’ and mmeralogﬁ/.The inorganic
according to BP Energy Outlook, the global primary ener%atter of shales is predominantly made up of quartz,
consumption grew by 2.2%, on a yearly basis. The productigfPonate, and clays’ State-of-the-art computational

of natural gas increased by 4% between 2017 and 2018, dfigthods have been developed to couple imaging data that

three years of slowdoWhRenewables and natural gas arefeveal chemical composition and pore size distribution of a

expected to account for 85% of the growth in primary ener gck sa_tmple, to generate realistic pore networks t_hat re_semble
ose in shales, and then perform mesoscale simulations to

demand by 2040This ever-increasing demand for energy is''©; . - <.
the root for the wide interest in unconventional hydrocarbon&Stimate permeability using, e.g., computatisdatlynam-
Hydraulic fracturing and the ability to drill extended-reaclfS: _

horizontal wells established the Barnett Shale as the largest ga&'€ accuracy of such calculations depends on several factors,
producing formation in the US in 2008. Stemming from thi&n0St importantly on the quality of input data used to generate

success, a shale gas revolution occurred in the United State€fh Pore networks. When implementing lattice-based ap-
the early 21st centut). proaches, both stochastic and deterministic, the transport

At present, the development and fataility of a shale play Properties assigned to the various pores and connections in the
depends on its permeability. Shale rocks consist of organic &ff€ network must be carefully selected. Due to the
inorganic matter with pore sizes ranging from the nano- to the
mesoscalfe Advanced imaging of core samples reveals theeceived: August 2, 2019
complexity of the pore system within the shale fifalthe Published: October 11, 2019
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signi cantly small scale of the pores often found in shalMD simulation results and predieid di usivity in mesoscale
formations, but also in engineering materials such as catalystses when results are available for narrow pores. We develop
atomistic molecular dynamics and Monte Carlo simulatiorss bespoke model that uses MD data as input to a KMC
(MD and MC) have been widely used to quantifid modeling framework. We consider slit-shaped pores carved out
transport through narrow pores as weluabstructure and  of ve solid supports that resemble minerals typically found in
preferential adsorpti6hThe atomistic simulations allow the the inorganic matter of shale formations. Tileconsidered
user to dene 1) the chemical composition of the pores, 2)is supercritical methane. The MD simulations are conducted
their shape and size, 3) théds and mixtures thall the for pores of width 5 nm. Equilibrium NVT simulations yield
pores, and 4) conditions such as temperature and pressure. 8ensity proles, which we use to drentiate between
example, Sui et al. studied adsorption and transport of methdaelsorbedand “bulk’” methane layers within the pores. We
in dry and water-wet montmorillonite clays and found that théhen calculate the disivity of methane in such areas,
methane self-dision coecient increases rapidly as the pore con rming that, in the pore cem, methane behavior
size increasés.Vasileiadis et al. investigated the role ofresembles that in the bulk. We use these data to construct
porosity on adsorption and transport of,GBHe, and CQ and inform our 3D KMC model, which contains 3 distinct
and their mixtures, in overmature type Il kerogen underegions with substrate-speciransport properties. The
various temperature and pressure conditiagng et al.  stochastic simulations yield theative diusivity of methane
investigated the transport of supercritical methane in clags a function of pore width. The results are validated by
calcite, and organic matter as a function of pore size, pressueproducing independent atomistic MD simulations conducted
and water content.Phan et al. calculated the permeability ofin wider pores. The KMC model is then used to generate a
methane through 1 nm-wide poriésd with watet?> and Bui  digital library where methane wdiivity is quanted as a
et al. identied the correspondent transport mechanisms bjunction of pore chemistry (i.e., the 5 materials considered
analyzing the free energy landscape within variou$’pores. here) as well as of pore width (up #®0 nm). Such digital
Although atomistic simulations can provide an accuratibraries could be used to describe 3D networks consisting of
understanding of the transport mechanisms imewent, pores with varying chemical compositions and PSDs. This will
upscaling to larger time and length scales requiresasigni  be the focus of our future work.
sometimes prohibitive computationaire As a result, the The remainder of this article is organized as follows: in
systems investigated are frequently composed of a single péregtion 2we describe the methods and algorithms
and a limited number of pore sizes/chemistries are explicitipplemented, from the atomistic simulations to the 3D
considered*®® To bridge the gap from atomistic simulations KMC model used to predict dsivity. InSection 3we
in single narrow pores to large scale systems, transport modégguss our results, from the details obtained with atomistic
that correlate dusivity and/or permeability to pore character- resolution for supercritical methane in the model pores, to
istics have been developed. Typically, these models accounif@soscale KMC predictions ofudivity, which yield the
three diusion mechanisms: Fickian, Knudsen, and surfa¢hgital library, including the validation tests we conducted.
di usion’® ?® The contribution of each mechanism to the Finally, inSection Ave summarize oundings, with a brief
overall uid transport is described by coents, derived overview of possible applications of our bespoke approach, as
either from experimental or computational data. Althoughell as of some of its limitations.
many transport models have been proposed, a gas transport
model that simultaneously considers organic nanopores, COMPUTATIONAL DETAILS
inorganic nanopores and microfractures is not yet availabife conducted a series of equilibrium molecular dynamics
Further, when using the available models at condition&MD) simulations to obtain the required input data and
di erent than those used to construct them, reparametrizatie@lidate our 3D KMC model using 5 and 10 nm slit pores (in

becomes mamdatc’rl%?.O _ one case, a 25 nm pore was also used). We describe here,
_Apostolopoulou et al. recently implemented stochastigrie y, the models implemented to simulate the solid
kinetic Monte Carlo (KMC) simulations to studyid substrates and the foroglds used to model methane and

transport across pore network€MC methods can access methane-surface interactions. We then discuss the setup of the
long time scales (up to ms and, in some cases, hours) and lagggaulated systems and the algorithms utilized, with particular
spatial scales (nm ton) at comparatively low computational attention to the development and validation of the stochastic
expens&>® For example, in a bottom-up 1D approach,KMC model.
Apostolopoulou et al. 1) used previously reported MD data to 2.1. Solid Supports. We considered slit-shaped pores
inform the KMC model, 2) simp#id a 3D, 2-phase system obtained from ve model materials: silica, alumina, MgO,
consisting of coned liquid water and methane into a 1D calcite, and muscovite, which represent minerals typically
problem, and 3) obtained KMC transport data in quantitativéound in the inorganic matter of shale formatidi®etails
agreement with atomistic MD simulations at a fraction of thabout the fabrication of the model materials have been
computational co$t.Apostolopoulou et al. recently extended reported elsewhete*® Characterization of theve solid
the analysis to a 2D netwdtkonstructed using imaging data, supports and comparisons, in terms of free energy landscapes
previously reported, for an Eagle Ford shale sample, as wekad methane solvation free energies, are discussed by Bui et
PSDs?” The transport model of Naraghi and Javadpour waal?® Further characterization of hydrated silica, alumina, and
used to assign transport properties to the pores within thdgO pores has also been achieved by calculating potential of
network:®> The KMC approach by Apostolopoulou et al. wasmean force prées®? In the models implemented here, all the
then validated both against deterministic models andonbridging oxygen atoms on silica and alumina surfaces were
experimental data. protonated; MgO, muscovite, and calcite surfaces were not
In this contribution, we address whether a stochasticydroxylated. The latter modeling choice is an oversanpli
approach based on our KMC model could be used to upscaien, as discussed by Bui éand Phan et &,but it allows
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us to understand, computationally, thects of uid solid coe cient of methane that are in relatively good agreement
interactions on uid transport under conement. The  with experiments. According to Ho et al., the % deviation
substrates have a surface parallel tX theplane of the  between MD simulations at 300 K using the TraPPE-UA and
simulation box. The& andY dimensions of the substrates are experiments at 297 K is 1686 for pressures between 50 and
shown inTable 1 Each pore was obtained by separating th&00 atnf® Feng et al. reported deviations between the
di usion coe cient of methane calculated using the OPLS-AA
Table 1. Simulation Box Dimensions Used To Simulate 5 force eld and experiments in the rangei% when the
nm (Z,) and 10 nm {,) Wide Pores Using Five Solid temperature is 295 K and the pressure ranges between 11 and
Supports 207 MP&?

In the present simulations, nonbonded interactions were
modeled by means of dispersive and electrostatic forces. The

dimensions in nm

substrate X Y 4 Z, electrostatic interactions were described by the Coulombic
silica 5.20 10.10 8.30 13.30 potential, with long-range corrections treated using the particle
MgO 5.50 10.40 7.50 12.50 mesh Ewald (PME) methddDispersive interactions were
alumina 5.12 9.12 7.41 12.41 modeled by 12-6 Lennard-Jones (LJ) potentials. The LJ
calcite 4.86 9.00 9.90 14.90 parameters for unlike interactions were determined by
muscovite 4.73 7.35 8.50 13.50 Lorentz Berthelot combining rules from the values of like

components>? The cuto distance for all interactions was
set to 1.4 nm. We did not apply long-range corrections
solid substrates along theirection, which is perpendicular to because, according to Siperstein et al., consistency in the cuto
theX Y plane. Th& dimension of the simulation box, which radius is more important than the inclusion of long-range
includes pore and substrate, is also presentedblan 1for corrections to the energy.
silica, MgO, alumina, calcite, and muscovite pores. These2.3. MD Simulation Setup and Algorithms. The
dimensions allowed us to maintain the pore width at 5 nm isimulation setup for the pores considered in this study mimics
all the systems considered. To obtain pores with width 10 niihe one introduced by Bui et?@lwhich was implemented to
theZ dimension was increased (Bakle ). The pore width investigate methane transport through hydrated 1 nm-wide
was dened as the shortest center-to-center distance betweeanopores. To directly compare results among vhe
surface oxygen atoms across the pore volume. We atsdstrates, we kept the overalld density at 0.01314
considered one pore of width 25 nm made of calcite. atoms/&  0.350 g/crhin all pores. To prepare systems
2.2. Force Fields.We used the forceelds previously with the desired density, we simulated the slit pores
employed by Bui et@To simulate silica, MgO, alumina, and surrounded by a bulk reservoir within a periodic simulation
muscovite, we implemented CLAYFF, while calcite wdsox. We monitored the pressure at the bulk reservoir regions
described using the forceld developed by Xiao et'# using the density pries and the Pengobinson equation of
In the calcite substrate, calcium and carbon atoms were kepate, while simulating dient amounts of methane, under the
rigid, whereas the oxygen atoms were allowed to move freglgsumption that the methane in the bulk region behaves like a
In the other materials, silicon, aluminum, and oxygen atomsacroscopicuid. The methane molecules were initially added
were held at xed positions, while the surface hydroxylto the reservoir. The temperature was kept at 300 K for all
hydrogen atoms were allowed to vibrate. All atoms in Mg®ubstrates. As the simulations progressed, sdmelecules
were kept rigid. entered the pore. Once the reservoir pressure for all substrates
We implemented the transferable potentials for phasgas constant at 87 MPa, we counted the molecules that had
equilibria in the united atom formalism (TraPPE-UA) toentered the ve pores. We then removed the reservoir and
model methane in all solid substrates, except €alcitae inserted the desired amounts of methane to the 5 pores, which,
latter substrate, to be consistent with Bui et al., we used tbecause of periodic boundary conditions, were ectively
OPLS-UA forceeld to model methaiéBoth TraPPE-UA  in nite alongX and Y dimensions. It was necessary to
and OPLS-UA forceelds yield values for the selfidion introduce 3450, 3758, 3068, 2874, and 2284 methane

Figure 1.Schematic of the MD simulation setup (left), the criteria for determining the 3 regions that describe the demsttyntétbane
(middle), and a 2D slice of a typical 3D KMC simulation setup (right). In the left panel, for visualization purposes, the solid support is silica. The
dashed red lines in the middle panel identify Regions 1, 2, and 3 and serve as guides to the eye.
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Table 2. Comparison between the Thicknesses of Regions 1 and 3, the Density, and the Number of Molecules Contained in
the Three Regions within Slit-Shaped Pores of Widttz§ and 10 nm )

length (nm) density (atoms/rn| molecules

R1 and R3° R1 and R3° R2
substrate Z, Z, Z, Z, Z, Z,
silica 0.70 0.70 13,806 13.7 505 12.9 2438 13.9 5890
MgO 0.64 0.64 14)%43 14.2 520 12.4 2672 13.0 6476
alumina 0.82 0.83 12.267 12.q 466 13.4 2134 13.4 5204
calcite 0.63 0.62 16.451 16.9 456 12.3 1972 12.6 4836
muscovite 0.74 0.72 15885 14.9 372 12.4 1514 12.84 3824

3The values reported for R1 and R3 represent the average of the twBTegitmdierence between R1 and R3 is less than 5%maunthe
hypothesis regarding the symmetric properties in Regions 1 and 3.

molecules in the 5 nm-wide silica, MgO, alumina, calcite, andThe data obtained from the 5 nm pores were used as input
muscovite pores, respectively. For the 10 nm pores, we ugedour KMC model to predict the dision of methane in slit
exactly double the number of molecules just listed. For all sofidres of varying width, as detaile8ention 2.4
substrates, the simulation box is periodic in the three We tested the validity of the KMC predictions against MD
directions. A representative simulation snapshot is showndata obtained for methane within 10 nm-wide pores. In the
Figure 1 case of calcite, as discusse&dntion 3,1we found the

An alternative simulation method for determining thedi usion to be anisotropic and the solid surface to strongly
amount of gas adsorbed in the slit pores for given temperatiféeract with the methane molecules. To test whether this
and pressure is grand canonical Monte Carlowe e ect was accurately captured using the KMC model, we also
preferred here the 2-reservoir method coupled with solvirfgmulated a 25 nm-wide pore using EMD simulations and
the PengRobinson equation of state due to simplicity andPerformed an additional comparison between EMD and KMC
computational eciency. We focus here on one set of rclasults..Due to thg high computatlonartereqwred for these
temperature and pressure, although it should be noted thgifnulations, we did not consider any other 25 nm-wide pores
realistic reservoir conditions show a range of pressures dndhis work. The procedures implemented to simulate 10 and
temperatures. The ect of temperature and pressure on 25 NM-wide pores are similar to those just described for the 5
supercritical methane transport through slit-shaped pores K48 POres. _ _ _
been recently reported by Wang &t fr various minerals. To analyze the molecular trajectories obtained from EMD

We performed EMD simulations in the canonical ensembfimulations, we calculated densitystbn coecients, and
(NVT) by maintaining a constant number of partidigs ( radial distribution functions (RDFs). For the density analysis,
simulation volumeVj, and temperatureT}, using GRO-  We used bins of width 0.02 nm, and we counted the number of

MACS, version 5.1°4>" The temperature was kept constant Molecules as a function &f From the density plots, we
P b enti ed Regions 1, 2, and 3 ($eégure Ifor a schematic of

at 300 K using 3 Nose-Hoover thermostats, to better contr three redi ithin the pore). We d the traiectorie
the gas temperature and avoid unphysical phenomena. In th "€ regions witni pore). We used the trajectories
within each region to calculate theuslion coecients for

thermostats, the relaxation time was set at 160 Tewo déwbethane in all substrates. We calculated ting\dfiy in thex

thermostats were used to control the temperature of the t > o
. , Y(Dy), andZ (D,) directions, within th&Y plane D,,),
and bottom solid surfaces, and one was used to keep t ﬁﬁ also the overall (total) divity D, using Einstels

temperature of the methane_: constant..The !eapfrog algoritWQIation on the basis of the calculated mean square
was used to solve the equations of motion with 1 fs timie Stepdisplacéments (MSDs):

To equilibrate the systems, we performed one NVT simulation

for 50 ns for each pore. To con equilibrium was reached, 1. |x() S X0)I?
we tested the convergence of metbatemsity prde along D = Et“m - 1)
the Z direction. We then performed 3 ns production runs at
300 K for each system to collect data. Following the same 1. Iy S }(0)|2
protocol, we also performed 3 independent bulk methane B, = Et“m - )
simulations using 1638 ¢holecules and a cubic simulation
box of size & 5 x 5 nn?. 1. 1zt S 70))?

Once the MD simulations were completed, analysis of the D, = E“m —_— 3)
density proles for methane in the direction perpendicular to ! t
the pore surface allowed us to identify 3 regions within each of 1 |rp|ane(t) S r'plalae)l 2
the pores: Region 1 (R1) and Region 3 (R3) are close to the B, = —li ' ' 4
solid surface; Region 2 (R2) corresponds to the middle of the 4 t )
pore (seeFigure ). As shown irFigure 1 Region 1 and 1 Ir® § r(0)|2
Region 3 were designed to include tfs two adsorbed By, = = lim —————
layers, in which it is expected, based on atomistic MD 6t t ©)
simulation results reported in the literature, that diek In egs 4and5, [rPat)  rPaR0)[? and ri(t) ri(0)f

behavior diers from bulk properties. The thickness of Regionare the MSDs in thé€Y-plane an&XYZspace, respectively, and
1 and 3 as identd on the various supports is provided inrP2{t) = (x(t), y(t), and ri(t) = (x(1), (D), z(1),
Table 2 respectively. Simonnin et®alYeh and Humméf, and Le

D DOI:10.1021/acs.jctc.9b00776
J. Chem. Theory ComplXXX, XXX, XX¥XXX


http://dx.doi.org/10.1021/acs.jctc.9b00776

Journal of Chemical Theory and Computation

et al®® reported that the diision coe cients computed using KMC approach can be found in our recent WdfkThe
molecular simulations fonids conned in wide nanopores Mersenne Twister MT19937 uniform random number
su er from nite-size eacts and proposed a correction to generator was used to obtain sequences of random numbers
overcome theseects. Similarly, Moultos et al. found that the needed for the selection of the event at each step and the
use of‘largé systems of several thousand molecules is naalculation of the time required for the transition to h&ppen.
always adequate for eliminating the dependence of selfWe validated our 3D KMC algorithm using analytical and
di usion coecients on system size and that explicitdeterministic methods for a variety of systemsrsitested
corrections, such as the Yeh and Hummer correction, musie model against the analytical solution of thesidn
be applied to account for systematic €ff@ased on the equation, seeq 7 for a homogeneous system with
latter work, Jamali et al. further proposed a MaShefthn nonperiodic boundaries. Then, we considered homogeneous
Yeh and Hummer correction foite-size eects of computed  systems with periodic boundaries. At last, we compared the
Maxwell Stefan diusion coecient$® In this study, to ~ KMC predictions against MD data for three systems with
correct for possiblenite-size artifacts and time-dependentincreasing heterogeneity and mixed boundaries.

uctuations, we calculated theudion coecients via the ) ) )
analysis of the correlation functions. The time scale forthe 1 € _ T T C
di usion coecient calculations was 20 ps of simulation run D t XXy 7 @)
time (which corresponds to 1Gtamesin the simulation).
After these 20 ps(0) was updated for all molecules. The To compare the 3D KMC against the analytical solution of
process was repeated 150 times, and the avensgjendi the di usion equation, we consideredxa33x 10 lattice. The
coe cient was obtained. unit cell size was 1 nm, and all boundaries wexive. We

To ensure that methane is at supercritical conditions, wéhiformly distributed 1350 molecules ine33< 3 cube from
calculated the RDFs at the end of each production run usi§igin O (0,0,0), as shown$ection 3,3while the rest of the
GROMACS. These data are reported Sagporting lattice remained empty. Thewdion coecient in all voxels
Information was set at £ 10 @ m?%s. We allowed the molecules toudie

2.4. 3D Kinetic Monte Carlo Validation. Our KMC and monitored the population in Voxel 5 (5,1,1) and Voxel 10
approach, applied to 1D and 2D pore networks, is described @49,1,1) as a function of simulation time. A sample was taken
Apostolopoulou et at>* The underlying model of the KMC every 0.01 ns, and the total simulation time was 10 ns. We
simulation is the Master Equatiory (§, which can be performed 10 independent simulations and obtained the
thought of as orobability balanté® The Master Equation ~ average population over time in the 2 voxels of interest. The
expresses the rate of change for the probBffifitgf nding equation of diusion for a 3D system is showadr; where 0

the system in stapeat timet, in terms of the probability imx X k0 y |Il,and0 z I, Dis the diusion
from other stateg, and the probability eix toward these ~coe cient, andC(xy2) is the overall concentration of
other state® molecules. For certain types of initial and boundary conditions,

the analytical solution ef| 7is the product of the analytical

dR() solutions of the three one-spatial-variable prob@ms)(
a WoR{() + VYo 1)t Cy(y,tg, andC,(zt)), and henceeq 7can be transformed into
ap ap (6) eq 8°°

The state vectogsandq in eq 6capture the information ) = *qQ y)t C,2)t
necessary to describe the location abitig uid particles in «y=G6xrgyr¢.s ®)
the porous network of interest. A state vector stores the For re ective periodic boundary systems, where the
number of particles contained in each and every voxel of thtolecules are initially distributed in a welhet region
network and updates it over tinve,, and W, are the hh x h, h, y h,and h, z h witha
propensities of theto-q and¢-top transitions, respectively, concentration g, Cy, andCe, initially distributed in th,
and are calculated by multiplying the KMC rate constants fof, andz dimension, respectively, the concentration distribu-
these transitions by the number of molecules contained intian over time is described’by
voxel. The generic MasteT 6can be used to describe the
di usion of a particle from vokgto voxei,j+1 as follows: in Cx 0 = 1., < 2nL S xl+ orf Sonl+ xiB
stateq, voxelj hasn;; + 1 particles and voxgt1l hasy;,, 1 *V=35 Cox s 2/t 2,/Ot
particles. The probability per unit time (propensity) for the ©)
aforementioned dision event to happen is given by the KMC

rate for thd,j to ij+1 transition multiplied by the number of =t & &
molecules in thig voxeln +1. If the transition is performed, Cly 9 = L Gy rfﬁmb erfg“iIy+y E
the population in thgj voxel will bey;, while the number of =S 2/t 2Bt

particles in thej+1 will be g,,, leading to statg (10)
To develop a 3D KMC model, we extended our 2D model

by increasing the number of possible moves a molecule can 1., " +2n,S z S2n,+ ziR
make from a voxel from 4 to 6 (left, right, up, down, back, and &z 9= 5G&" ”EZZT l" e”ﬁzzﬁ lg
forth). The computational eiency of the KMC algorithm is s

strongly dependent on the matrix mesh, as the computational 11
cost to select each KMC step scales with the number of To validate the accuracy of our 3D KMC model, we
possible events. ConsideNhtp be the number of voxels, for obtained the analytical solution of theision equatione(

anM x M x M system, there arex6M x M x M possible 7), which is the product efjs 8 11, and compared stochastic
events at each step. The algorithmic steps implemented for asranalytical results. We found the stochastic approach to be in

N
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Figure 2.Schematic of the KMC algorithmic steps performed to simulate methsioa thirough pores of varying widths.

excellent agreement with the analytical solution of tiséodi Ineq 12 STD is the standard deviatib(i) is the di usion
equation (see theesults sectipn coe cient for each independent run, arid the number of

To test the 3D KMC model for systems with periodicindependent runs. For these calculafieri4,3] and hence
boundary conditions, we usedxahx 3 lattice with unitcell = 3.

size of 1 nm. The lattice was periodic in all directions, and the2.5. 3D Kinetic Monte Carlo Setup.The bespoke 3D

di usion coecient was uniform aloiqg Y, andZ directions, KMC model was set up to mimic the EMD slit pore described
with values ranging from 1.3 to .310 8 m?%s (target in Figure 1 The simulation boxes were periodic aXcemgdY

di usivity). A single molecule was inserted in a randordirections and rective or¥, to represent the pore surface. To
position and was allowed to ule. Its trajectory was set up the transition rate$MC, required to describe the
monitored for 70 ns, with samples extracted every 0.7 nmobability of methane moving from one voxel to another
For every value of the dsion coe cient selected (target), we within the simulation box, we considered kinetic barriers
performed 3 independent runs. From the stochastic trajectoriesnsistent with the dision coe cients in Regions 1, 2, and 3,
obtained, we calculated theudion coecient of the particle  usingeq 13%7°

and compared the disivity calculated against the input D

di usion coecient (target). The results showed perfect r*M°= —

agreement between input and outpuusion coecient, | (3)

further validating our 3D KMC model. whereD is the diusion coecient, and is the voxel size. We

We previously discussed the appeal of a 2D KMC model {§q not consider thermodynamic barriers, as there are no pore-
guantify the eect of hgterogenelty y\{|th|n a pore network in gpirance or pore-exit ets in the present model. The
terms of medium ective permeability. we test here the i ysion coecient values from the EMD simulations, for the
accuracy of our bespoke 3D KMC model, while considering nm.wide pores, were used as input for the stochastic KMC
systems with strongiid-surface interactions and increasingyodelks Regions 1 and 3 (S&gure for a schematic). These
degree of heterogeneity. We used the 5 nm silica setup apgdes are reported Bection 3.1for each solid support
increased the parameter that describes methane-silicon angdgnsidered. The dision coe cient assigned to Region 2 in
methane-hydroxyl interactions 5 and 25 times. The resulting,; stochastic model was obtained from bulk EMD
force eld is not realistic, but it provides an @il system  gimulations: 1.9% 0.08x 10 8 m%s. We calculated error
with strong surfacesd attractions. We used 3000 methanepa,s for all the input values used to feed our KMC model, by
moIe_cuIes toll each articial system and compare_d the resultsperforming 3 independent EMD simulations for each system.
obtained from all three cases. For comparison, we usgd jncrease the accuracy and minimize the uncertainty of our
di usion coecient values predicted from the EMD giochastic model, we incorporated the error bars calculated
simulations within the three regions (R1, R2, and R3) usinghen assigning the transition rates for our stochastic approach.
a setup S|m|Iar_ to the one presenteﬁignre 1We calculated To predict the overall (total) methaneuivity in large
the overall dusion coecient of methane using EMD 65 we added the necessary voxels to Region 2. We
simulations and our 3D KMC model. At the end, wecgnsidered 35 dirent pore widths for alve substrates. For
compared the coeients obtained from the two methods gach pore width, a single molecule was initially placed at a
and found the results to be in excellent agreement. For e dom position. The molecule was allowed to move freely
system, we performed 3 independent EMD runs and calculaigdo,gh the simulation box for a total of 70 ns. A sample
the mean error using the standard error equation monitoring the position of the molecule was taken every 0.7 ns.
STDO()) This process was repeated 10 times, while starting the
- =\ molecule from the same position. At the end of the 10th
Jn (12) iteration, a dierent random position was selected for the

Effor =
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Figure 3.Planar density prte for CH, near the surface of the 5 substrates (bottom panel) in atofis#Aop panel shows the composition of
the 5 solid supports, as reported by BuféCallor code: Si = yellow, Mg = tan, Al = pink, K = purple, C = green, Ca = blue, O =red, and H =
white.

Figure 4.Density proles for the 5 nm pores (black lines) and the 10 nm pores (blue lines). In the top panel (silica) we provide the comparison
between the 5 and 10 nhm density lg®as a function of the distance from the pore wall.
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Figure 5.Di usion coecients calculated in Regions 1, 2, and 3, as well as in the whole pore (total), within the pores considered in this study.
Panel (A) shows the results obtained for the 5 nm pores, and panel (B) shows those for the 10 nm pores.

molecule, and 10 independent runs followed. We consideredBoth Figure 4and Table 2 present the distribution of

75 initial congurations for each pore width simulated. Themolecules in Regions 1 an&igure 4resents the number of
simulation protocol for the KMC simulations is presented imolecules within theyplane as a function nfwhileTable 2

Figure 2 We monitored the codence intervals obtained of reports the total number of molecules counted i yhand

the di usion coecient calculated while consideringeint z directions. InFigure 4 for some of the substrates, the
pore sizes for each substrate. Because no overlap was obsedeedities for the smaller pores appear as scaled versions of the
it is concluded that this number of iterations and initializationwider ones. This is because the area below the density curves is
allowed us to obtain suaient statistics for the calculation of the number of molecules per unit surface area, an intensive

the moleculs di usivity. variable, which is lower for the smaller pores. However, we
note that the number of molecules below the density curves
3. RESULTS AND DISCUSSION presented ifigure 4and reected infable Zor Region 1 and

3.1. Data Analysis. Density plots were obtained for Region 3, as obtained from the 5 and 10 nm pores, does not
methane inside the 5 and 10 nm-wide pores from empli er. The dierences observed in thist peak of the density
simulations. Using MATLAB, the density le® were Pro les, for some of the substrates, is possibly related to the
integrated, and the total amount of molecules was count@foximity of the solid slabs when the pore width is 5 nm. Our
in all systems, to ensure less than 1% deviation between fhelsion coecient data (se€igure } also suggest a small
number of molecules in Regions 1 and 3 for both 5 and 10 nr-€ct due to the proximity of the two pore surfaces when the
wide pores and to cam that equilibrium was reached. From pore width is 5 nm, compared to data obtained for the 10 nm
the density prdes, we identéd the 3 regions inside the pore Ppores. Hence, it is possible that although the total number of
(seeTable 3 and counted the number of molecules in eachmolecules in Regions 1 and 3 is similar in 5 and 10 nm pores,
From the analysis of the density ja® we conmed thatthe  this interference of the parallel slabs causes a sligéntdi
regions close to the pore surface (R1 and R3) do not changesSpatial arrangement of interfacial molecules, which is captured
thickness when the pore width increases. We also ensured thathe density prées presented Figure 4 However, for the
the di erence between the number of molecules in Regionspurpose of this study, these spatial variations are expected to
and 3 was less than 5% for each podesystem. We found have an insigriant impact on the dision coecients
that the number of molecules adsorbed on the pore surfapeedicted for wider pores.
remains approximately the same (within 5%) when the pore Within each region, we calculated salitin coe cients
width is increased from 5 to 10 nm. The numbers of moleculégseeComputational Detg)ls=igure Ssummarizes the results
found within each of the 3 regions within each substrate avgthin 5 (panel A) and 10 nm pores (panel B). The error bars
reported inTable 2 shown in panel (A) are obtained by calculating the standard

To characterize the structure of the adsorbed methane @fror, seeq 12 from results obtained in 3 independent EMD
each pore surface, we plotted the surface density for meth&iraulations. Error bars for panel (B) are not available using the
on the 5 systems, as showRigure 3Methane molecules in standard error formula, since the simulations were performed
the rst and second adsorbed layer were considered for thigly once to validate the 3D KMC model and not to be used
analysis. In some of the substrates, methane shows eviden@sdfputs. The dision coe cient close to the pore surface is
patterning (silica, calcite, and muscovite), while in others tHewer than in the pore center, where methane exhibits bulklike
molecular distribution is rather uniform. behavior. When considering the average values for the 5 nm-

In Figure 4we show the density ples obtained along the wide silica, MgO, alumina, and muscovite pores, tiséodi
Z direction within the 5 nm (black line) and the 10 nm porescoe cient in Region 2 is slightly lower than the bulksthn
(blue line). From the analysis of the densitylgspit is coe cient, which was calculated to be .9108x 10 & m?/
con rmed that the density measured in the middle of all poresfor CH, density of 0.01314 atom&/4 300 K. This is due to
remains constant when the pore substrate is changed, and #teo slightly higher density observed in the middle of these
when the pore width is increased. pores. In calcite, the opposite behavior was observed. This is
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Figure 6 Di usion coe cients in th&X andY directions, calculated in Regions 1, 2, and 3, as well as in the whole pore (total). Panel (A) shows the
results obtained for the 5 nm pores, and panel (B) shows those for the 10 nm pores.

due to the signcantly stronger interaction between thid

and the calcite surface, which yields a higher number of

molecules absorbed close to the pore surface, leaving the

middle of the pore (Region 2) less crowded, as shdwhla

2. Since fewer molecules are in Region 2, compared to the

other substrates, a higherudivity was observed in this

region. Considering the error bars estimated fasidty

data, it is observed that all uiion coecient values for

Region 2, besides calsitare consistent with each other. This

con rms that the molecules found in Region 2 are beyond the

range of surface interactions, when the pores are at least 5 nm

wide. Wang et al. reached a similar conclusion, for simulations

conducted within 5.4 nm-wide slit pores made of montmor-

illonite and calcite andled with supercritical methane at Figure 7.Analysis of anisotropic dsion in calcite. Theaxis shows

various densities lower than those considered here. the % absolute deviation betwBgiand D, values measured in the
The diusion coecient in Regions 1 and 3 for each three regions and the whole (total) pore, using &atit pore

substrate is similar, as expected. Moreover, thsiodi  widths.

coe cient in the regions close to the pore remains almost

constant when comparing 5 and 10 nm pores. This is expected,

since the number of adsorbed molecules and the thicknessygfe Region 2, the % elience between tBg andD, values

the adsorbed regions remains unaltered while incre<'J‘3ing_s%%ignicantly smaller, as theeet of the surface has vanished.

size of the pore. Wang et al. also observed the mass densitgighilar anisotropic ects, in the region close to the calcite

the two adsorbed layers to remain unchanged when simulatfigface, were also reported by Bui“étaaid Franco et &l.

supercritical methane coed in 1.8 and 5.4 nm-wide calcite Buj et al. explained the anisotropic behavior of methane in

pores:* When considering pores of the same material, oWydrated calcite nanopores using free energy landscape

results show that the overall (total)udivity increases as the calculations to further characterize the pore surfaces, as in

pore width increases. We will discuss later at which pore widtt case the pores wehed with water. They showed that,

the di usivity of conned methane reaches values comparablgecause of the structure of cwd water, the path of

to those found in the bulk. Our hypothesis is that this increasfiinimum resistance for methaneusion along theY

in di usivity with pore width is due to the relative increase oflirection is a straight line, while that along<td@ection is

the Region 2 thickness when pore width increases. In faglgzagliké? Note thatX andY directions are arbitrary; in the

within Region 2, the dision coecients are sigrdantly present comparison, we takandY directions to be those

higher compared to the areas close to the pore walls. shown inFigure 3 Franco et al. also observed methane
When considering the dkivity across the whole pore di usivity along th¥ direction to be higher than that alohg

(Regions 1, 2, and 3), and D, values calculated for silica, near the calcite surface for three pore witithsr results

MgO, alumina, and muscovite pores are very sigslathan  agree with this observation, as shovgime 7

1% dierent, which is an indicator of isotropiwsion. The To verify that the thermodynamic conditions inside all pores
same behavior is also observed when comparigatiaD, correspond to supercritical methane, we plotted radial
values in Regions 1, 2, and 3 individually Kgpee . distribution function prées for methane within the 5 nm

However, within calcite pores, Bh@ndD, values in Regions pores. Based on the results obtained (reported in the
1 and 3 are sigr@antly dierent, approximately 33%, 40%, Supporting Informatipnit was conrmed that methane in
and 17%, when considering 5, 10, and 25 nm poreRegion 2 is at supercritical conditions within all systems
respectively, as presentedrigure 7 In the middle of the  considered.
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Figure 8.Density (panel A) and RDFs (panel B) for methane within realistic silica pores, as well as within pores with exceptionally strong solid
uid interactions.

Figure 9.Analysis of the surface interacti@teon the width of Regions 1 and 3 (panel A), number of molecules absorbed (pansil/By, di
in Regions 1, 2, and 3 (panel C), and overall (totalpidity predicted using EMD simulations and the KMC model (panel D).

Figure 10.Surface density pites for methane on the 3 silica-based systems as a function of surface-methane interactions. Panel (A) shows the
realistic silica surface, while panels (B) and (C) show the surfaces that are 5 and 25 times more attractive, respectively. Methane molecules in
rst and second adsorbed layer were considered for this analysis.

3.2. Model Systems with Exceptionally Strong Sur- cussed above for silica substrates when the dtdsevere
face-Fluid Interactions. We performed the analysis dis- modi ed to represent excaptally strong surfaceid
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Figure 11.(A) Representation of the 3D KMC nonperiodic system. The red region represents the area where the molecules were initially
distributed. The comparison between the analytical equation and the 3D KMC predictions for (B) voxel 5 and (C) voxel 10, respectively.

Figure 12.Validation of the 3D KMC algorithm using a periodic lattice.

interactions. In these model systems, the methane-silicon aedult, the dusivity of methane in the 3 regions is expected to
methane-hydroxyl interactions were increased by 5 and &fgnicantly change as the solidid interactions increase.
times, as described $ection 2.4In Figures 8and 9, we The number of molecules in the 3 regions within these pores is
compare the results obtained against those gathered within sienmarized iRigure 9 panel (B). As the attraction between
realistic silica substrate. Note that the number of moleculéise surface and theiid increases, the number of molecules
inserted in the pores was 300Citjure 8we show how the adsorbed on the surface increases, leading to a reduced
three systems compare in terms of densitiepr{panel A) occupancy in the middle of the pore.
and RDFs (panel B). The dsion coecients calculated in As the surface-methane attraction increases, the methane
the three regions are reportedrigure Ypanel C, panel D).  di usion coecient in Regions 1 and 3 was found to drop
The e ect of the strong surface interaction is evident fronsigni cantly, by almost 1 order of magnitude every time the
the density prdes and RDF plots, shownFigure 8 To solid-surface interaction was increased by 5 times, while the
further characterize the systems:ignre 10we show the  di usivity in Region 2 increases moderately. However, we
planar density prtes parallel to the pore surface for methanefound the overall (total) disivity to remain constant. To
within the second adsorption layer, which is determined froexplain these observations, our hypothesis is that the following
the density prdes in Figure 8 According to panel (A), two e ects cancel each other out: 1) decreased R1 and R3
methane molecules preferably arrange in circles surroundth@ggkness, with correspondingly decreasedity, and 2)
the oxygen atoms on the surface. As the interaction betweiecreased R2 thickness, wibrrespondingly increased
surface and methane increases (panels B and C), the amodinusivity.
of methane molecules occupying positions aligned with the3.3. 3D KMC Model Validation.The 3D KMC model was
oxygen atoms increases. This is probably because taidated against the analytical solution of thesidn
maximum number of molecules that can occupy the peripheggjuation. To solwsg 8andeqgs 9 11, we considered a lattice
positions surrounding the oxygen atoms has been reached, aadtaining 10 columnX ¢lirection), 3 rows4 direction), and
additional molecules have to occupy positions that correspoBdslices Y direction). All boundaries were eetive: once a
to higher conformational energy. molecule reached a boundary, it bounced back to the lattice.
In Figure 9panel (A), we present the thickness of Regions 1350 molecules were distributed in thethird of the system,
and 3, as calculated from the density plots. As the salid as shown in red iRigure 11 panel (A). The dusion in all
attraction increases, these regions narrow and the methamxels within the lattice was set to< 110 8 m?/s. We
density in Regions 1 and 3 increases, which is in qualitatii®nitored the number of molecules in the 5th and 10th voxels
agreement with the 2D density e presented Figure 10 over time and solved)s 8 11. The results obtained from the
On the contrary, the methane density in Region 2 decreases38sKMC and those from the analytical equation are plotted in
con rmed by the density pies shown irFigure 8 As a Figure 1llpanels (B) and (C), respectively. Visual inspection
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Figure 13.Overall the diusion coecient O,y as a function of the pore width for the 5 solid supports considered here. Comparison between
KMC predictions and EMD data. Note that the deviation between KMC and MD data is less than 10%, in all cases.

con rms satisfactory agreement and shows that the stochastitVe nally tested the ect of the unit cell size on the

results uctuate around the deterministic ones. Ttua- di usion coecient calculated by the 3D KMC approach. We
tions could be reduced by performing a larger number dbund no statistically sigeant di erences when using smaller
independent runs and averaging the results. or bigger unit cell sizes. This aoms the validity of the 3D

The 3D KMC model was also tested for a homogeneous afdMC model in representing periodic systems. To test the 3D
periodic system. In this case, we set up 6 systems consisting®IfC model in a heterogeneous system we considered the 3
5 columns X direction), 6 rowsZ direction), and 3 slice¥ (  systems where the surfagi interaction was altered (see
direction). We inserted 1 molecule, and we allowed it t&ection 32 We used the values reporteBigure 3o set the
di use. We collected samples every 0.07 ns during a total ofdiOusivity in Regions 1, 2, and 3. We used the algorithmic steps
ns of simulations. We then calculated the MSD from thdescribed ifrigure 1but for only 1 value of the pore width.
trajectories and the dision coecient. Each system was From the trajectories obtained, we calculated thsiat
homogeneous, and the input (target)usion coecient coe cient from 10 independent runs. The results are
varied from 1.3 10 8to 2.3x 10 8 m%s. In Figure 12wve presented irFigure 9panel (D), which shows agreement
present the MSDs calculated from the 6 systems (panel A) abdtween the KMC and EMD approaches, validating the
the comparison between the input (target) and calculateapplicability of the KMC model in heterogeneous systems.

di usion coecient (panel B) when using the 3D KMC  3.4. 3D KMC Predictions of Supercritical Methane
algorithm. Di usivity in Pores. In this Section we present the results
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obtained using the 3D KMC approach on the slit pore systenthe di usion coecient in the pores center is very similar to
using as input the results from atomistic EMD simulationshe bulk value, albeit not identical; calcite exhibited a higher
Regions 1, 2, and 3 were spatiallyet within the KMC  di usion coecient in Region 2, compared to the bulk, and the
lattice based on density des such as thoseRigure 4 The rest of the substrates were slightly lower. It is expected that, as
di usion coecients assigned to voxels within each regiothe pore width increases, theudion coecient in Region 2
were the EMD results éfigure 5 To predict the overall converges to the bulk, and the KMC input for the region
(total) di usivity in pores of increasing width, we followed thébecomes more accurate. This can be furthemnuesh by the
algorithm described iigure 2In Figure 13we present the 25 nm calcite pore, where theedénce between the EMD
results obtained for the pores carved out of the 5 supports, fand the KMC values i2.3%.
widths from 3 to 60 nm. Note that the limit of Xaaxis in the Overall, the deviations between KMC and EMD data are
ve panels shown Figure 13changes from one system to satisfactorily small and presumably could be further reduced if

another. This is because of the protocol we used to set up thre independent EMD simulations were performed and
3D KMC systems, according to which the number of porenore accurate inputs were used to initiate the 3D KMC model,
widths was the parameter used to determine the systems @5 the expense of increased demands on computational
pore widths for each substrate), together with the thickness r@sources. Additional independent EMD simulations could
Regions 1 and 3, which eli among the substrates, as shownalso provide error bars and further aid the comparison between
in Table 2 The KMC data are shown as blue circles. The errathe two approaches. We note that in pores thinner than 5 nm,
bars calculated accordingdol2 considering 10 independent each parallel pore surface may interact withmolecules
runs, are shown in red. The grtgd line is a guide to the adsorbed near both walls, causing strong deviations from
eye, and the blue dashed line shows thsidn coe cient of bulklike behavior within the whole pore, even in its middle. In
the bulk methane, as calculated from 3 independent EMibis case, the accuracy of the KMC model is expected to
simulations in the bulk. It is helpful to remember that theworsen, and the % deviation between KMC and EMD
density of the bulk methane is set to 0.01314 atohesidd  simulations will potentially exceed the 10% threshold.
the temperature is 300 K. It should be emphasized that using the 3D KMC model for

In all the pores considered, as the pore width increases, t&timating self-dision coecient in pores with varying pore
di usion coecient of methane increases as well, until itwidth provides accurate results at very low computational cost.
reaches its bulk value, 1290.08x 10 8 m%s. Accordingto  For the 5 nm pores considered, e.g., we performed atomistic
the results ifrigure 13the supercritical methane aoed in EMD simulations for 53 ns for each solid. The time required
MgO and silica slit-shaped pores exhibit bulklikesidity for these calculations, using a supercomputer, ranged between
when the pore width is slightly above 30 and 35 nm30 and 42 h; the time required for conducting atomistic EMD
respectively. Within the muscovite pores, supercritical methagimulations within the 10 and 25 nm simulations was higher, as
reaches bulk behavior when the pore width is almost 40 ntie number of molecules increased. By comparison, the time
Within the alumina pores, this happens when the pore widthiisquired for the KMC simulations, per substrate, was
slightly wider than 37 nm, while in calcite the pore widthapproximately 35 min on the supercomputer to predict self-
required for supercritical methane to achieve bulklikdi usion coecient in pores of 35 dirent pore widths. The
di usivity is almost 50 nm. Our hypothesis is that thimodes used to perform these simulations consisted of 2 Intel
substrate-speci behavior is due to the preferential distribu-Xeon E5-2683 v4 cores with 128 GB total RAM. For each pore
tion of methane in Regions 1 and 3, near the solid substrategdth, 75 dierent initial corgurations were tested in one
While comparing the surface densityl@sowithin the rst simulation run, and 10 independent runs were performed,
adsorbed layer, presentedFigure 3 the MgO substrate leading to a total of 26,250 simulations. This amount of
shows the most uniform methane distribution, with silicasimulations takes approximately 4 h on a standard desktop
alumina, and muscovite substrates following. However, calatenputer, on which it would be prohibitive to conduct
exhibits sites that strongly attract methane. In a few poregpmistic EMD simulations. Admittedly, transport models such
notably within silica, the results seem to suggest that, in so@me those discussedSection ;L could be used to generate
cases, the dision coe cient for the comed methane can be digital libraries similar to those showRigure 13However,
larger than that in the bulk. We ascribe this to numerical errots, make those models applicable for the systems investigated
which are quantd below, as we note that the data pointshere, a certain number of parameters, usually obtained from
corresponding to faster @ion than bulk are consistent with EMD data, should beted to describe each substfate.
bulklike diusion, when the error bars are considered. A numerical integrator of Lang&viequation of motion

In the ve panels dfigure 13we also report the dision could also be implemented, instead of the KMC approach
coe cient data obtained by atomistic EMD simulations. Foproposed here, to describe the time evolution of a $yStem.
silica, MgO, alumina, and muscovite, there are 2 EMD daliahas been reported that the selection of the integration step
points, corresponding to 5 and 10 nm pore widths. For calciteas a pivotal impact on the accuracy of the results obtained by
an additional data point is reported, at 25 nm width. Themplementing Langeisnapproach, with shorter integration
deviation between EMD data and KMC predictions in all cassseps yielding more accurate results at the expense of higher
is less than 10%. For the 5 nm pores, the % deviation is 8.8%mputational cost. Similarly, several independent runs should
8.1%, 7.4%, 9.3%, and 4.5% for silica, MgO, alumina, caldieperformed to ensure that accurate results are achieved when
and muscovite pores, respectively, while for the 10 nm poriesplementing the KMC protocol, which leads to increased
the % deviations becom#.3%, 4%, 0.8%, 6.1%, and 7.9%, computational cost. It is however expected that the KMC
respectively. Froffigure 13and the % deviations, it appears approach presented here could yield predictions for larger
that the KMC predictions agree better with EMD data as thepatial scales and longer temporal scales than those achievable
pore width increases. This is because of thesial by solving Langewsn equation of motion, because the
coe cient assigned to Region 2. As discusseelction 3,1 stochastic KMC approach does not require resolving the
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di usive trajectories of individual particles. For completeness, RDF proles for 5 nm-wide poreBIjF)
it should be noted that an innovative approach to numerically
solve the Master Equatia)(§ was proposed by Kolokathis
and Theodoro(f, who simulated dision of xenon in AUTHOR INFORMATION
silicalite-1. Their numerical approach was faster than KMCorresponding Author
simulations, than solving numerically the Master EquatiotE-mail:a.striolo@ucl.ac.uk
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10', 10, and 10, respectively. An alternative approach coulq_,.
also implement the work of Zaragoza €tahp proposed an !relle_l S. Santm00-0002-9590-5536
equation that correlates asion coe cient and the viscosity. Michail Stamataki0-0001-8338-8706
When considering wide pores, where the viscosity is ~ Alberto Striolao00-0001-6542-8065
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