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ABSTRACT:The increased production of unconventional
hydrocarbons emphasizes the need to understand the transport
of � uids through narrow pores. Although it is well-known that
con� nement a� ects� uids structure and transport, it is not yet
possible to quantitatively predict properties such as di� usivity as
a function of pore width in the range of 1� 50 nm. Such pores
are commonly found not only in shale rocks but also in a wide
range of engineering materials, including catalysts. We propose
here a novel and computationally e� cient methodology to
obtain accurate di� usion coe� cient predictions as a function of
pore width for pores carved out of common materials, such as
silica, alumina, magnesium oxide, calcite, and muscovite. We
implement atomistic molecular dynamics (MD) simulations to quantify� uid structure and transport within 5 nm-wide pores,
with particular focus on the di� usion coe� cient within di� erent pore regions. We then use these data as input to a bespoke
stochastic kinetic Monte Carlo (KMC) model, developed to predict� uid transport in mesopores. The KMC model is used to
extrapolate the� uid di� usivity for pores of increasing width. We validate the approach against atomistic MD simulation results
obtained for wider pores. When applied to supercritical methane in slit-shaped pores, our methodology yields data within 10%
of the atomistic simulation results, with signi� cant savings in computational time. The proposed methodology, which combines
the advantages of MD and KMC simulations, is used to generate a digital library for the di� usivity of gases as a function of pore
chemistry and pore width and could be relevant for a number of applications, from the prediction of hydrocarbon transport in
shale rocks to the optimization of catalysts, when surface-� uid interactions impact transport.

1. INTRODUCTION

The Energy Information Administration (EIA) projects a 28%
increase in world energy use between 2015 and 2040.1 In 2017,
according to BP Energy Outlook, the global primary energy
consumption grew by 2.2%, on a yearly basis. The production
of natural gas increased by 4% between 2017 and 2018, after
three years of slowdown.1,2 Renewables and natural gas are
expected to account for 85% of the growth in primary energy
demand by 2040.2 This ever-increasing demand for energy is
the root for the wide interest in unconventional hydrocarbons.
Hydraulic fracturing and the ability to drill extended-reach
horizontal wells established the Barnett Shale as the largest gas
producing formation in the US in 2008. Stemming from this
success, a shale gas revolution occurred in the United States in
the early 21st century.3,4

At present, the development and pro� tability of a shale play
depends on its permeability. Shale rocks consist of organic and
inorganic matter with pore sizes ranging from the nano- to the
mesoscale.5 Advanced imaging of core samples reveals the
complexity of the pore system within the shale matrix.6,7 The

properties that de� ne shale permeability are mainly porosity
(pore size distribution� PSD), organic content (% of total
organic carbon� TOC), and mineralogy.8 The inorganic
matter of shales is predominantly made up of quartz,
carbonate, and clays.9� 13 State-of-the-art computational
methods have been developed to couple imaging data that
reveal chemical composition and pore size distribution of a
rock sample, to generate realistic pore networks that resemble
those in shales, and then perform mesoscale simulations to
estimate permeability using, e.g., computational� uid dynam-
ics.14� 17

The accuracy of such calculations depends on several factors,
most importantly on the quality of input data used to generate
the pore networks. When implementing lattice-based ap-
proaches, both stochastic and deterministic, the transport
properties assigned to the various pores and connections in the
pore network must be carefully selected. Due to the
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signi� cantly small scale of the pores often found in shale
formations, but also in engineering materials such as catalysts,
atomistic molecular dynamics and Monte Carlo simulations
(MD and MC) have been widely used to quantify� uid
transport through narrow pores as well as� uid structure and
preferential adsorption.18 The atomistic simulations allow the
user to de� ne 1) the chemical composition of the pores, 2)
their shape and size, 3) the� uids and mixtures that� ll the
pores, and 4) conditions such as temperature and pressure. For
example, Sui et al. studied adsorption and transport of methane
in dry and water-wet montmorillonite clays and found that the
methane self-di� usion coe� cient increases rapidly as the pore
size increases.19 Vasileiadis et al. investigated the role of
porosity on adsorption and transport of CH4, C2H6, and CO2
and their mixtures, in overmature type II kerogen under
various temperature and pressure conditions.20 Wang et al.
investigated the transport of supercritical methane in clay,
calcite, and organic matter as a function of pore size, pressure,
and water content.21 Phan et al. calculated the permeability of
methane through 1 nm-wide pores� lled with water,22 and Bui
et al. identi� ed the correspondent transport mechanisms by
analyzing the free energy landscape within various pores.23

Although atomistic simulations can provide an accurate
understanding of the transport mechanisms in con� nement,
upscaling to larger time and length scales requires signi� cant,
sometimes prohibitive computational e� ort. As a result, the
systems investigated are frequently composed of a single pore,
and a limited number of pore sizes/chemistries are explicitly
considered.24,25 To bridge the gap from atomistic simulations
in single narrow pores to large scale systems, transport models
that correlate di� usivity and/or permeability to pore character-
istics have been developed. Typically, these models account for
three di� usion mechanisms: Fickian, Knudsen, and surface
di� usion.26� 28 The contribution of each mechanism to the
overall � uid transport is described by coe� cients, derived
either from experimental or computational data. Although
many transport models have been proposed, a gas transport
model that simultaneously considers organic nanopores,
inorganic nanopores and microfractures is not yet available.
Further, when using the available models at conditions
di� erent than those used to construct them, reparametrization
becomes mandatory.29,30

Apostolopoulou et al. recently implemented stochastic
kinetic Monte Carlo (KMC) simulations to study� uid
transport across pore networks.31 KMC methods can access
long time scales (up to ms and, in some cases, hours) and large
spatial scales (nm to� m) at comparatively low computational
expense.32,33 For example, in a bottom-up 1D approach,
Apostolopoulou et al. 1) used previously reported MD data to
inform the KMC model, 2) simpli� ed a 3D, 2-phase system
consisting of con� ned liquid water and methane into a 1D
problem, and 3) obtained KMC transport data in quantitative
agreement with atomistic MD simulations at a fraction of the
computational cost.34 Apostolopoulou et al. recently extended
the analysis to a 2D network,31 constructed using imaging data,
previously reported, for an Eagle Ford shale sample, as well as
PSDs.35 The transport model of Naraghi and Javadpour was
used to assign transport properties to the pores within the
network.35 The KMC approach by Apostolopoulou et al. was
then validated both against deterministic models and
experimental data.

In this contribution, we address whether a stochastic
approach based on our KMC model could be used to upscale

MD simulation results and predict� uid di� usivity in mesoscale
pores when results are available for narrow pores. We develop
a bespoke model that uses MD data as input to a KMC
modeling framework. We consider slit-shaped pores carved out
of � ve solid supports that resemble minerals typically found in
the inorganic matter of shale formations. The� uid considered
is supercritical methane. The MD simulations are conducted
for pores of width 5 nm. Equilibrium NVT simulations yield
density pro� les, which we use to di� erentiate between
“adsorbed” and “bulk” methane layers within the pores. We
then calculate the di� usivity of methane in such areas,
con� rming that, in the pore center, methane behavior
resembles that in the bulk. We use these data to construct
and inform our 3D KMC model, which contains 3 distinct
regions with substrate-speci� c transport properties. The
stochastic simulations yield the e� ective di� usivity of methane
as a function of pore width. The results are validated by
reproducing independent atomistic MD simulations conducted
in wider pores. The KMC model is then used to generate a
digital library where methane di� usivity is quanti� ed as a
function of pore chemistry (i.e., the 5 materials considered
here) as well as of pore width (up to� 60 nm). Such digital
libraries could be used to describe 3D networks consisting of
pores with varying chemical compositions and PSDs. This will
be the focus of our future work.

The remainder of this article is organized as follows: in
Section 2 we describe the methods and algorithms
implemented, from the atomistic simulations to the 3D
KMC model used to predict di� usivity. In Section 3we
discuss our results, from the details obtained with atomistic
resolution for supercritical methane in the model pores, to
mesoscale KMC predictions of di� usivity, which yield the
digital library, including the validation tests we conducted.
Finally, inSection 4we summarize our� ndings, with a brief
overview of possible applications of our bespoke approach, as
well as of some of its limitations.

2. COMPUTATIONAL DETAILS
We conducted a series of equilibrium molecular dynamics
(EMD) simulations to obtain the required input data and
validate our 3D KMC model using 5 and 10 nm slit pores (in
one case, a 25 nm pore was also used). We describe here,
brie� y, the models implemented to simulate the solid
substrates and the force� elds used to model methane and
methane-surface interactions. We then discuss the setup of the
simulated systems and the algorithms utilized, with particular
attention to the development and validation of the stochastic
KMC model.

2.1. Solid Supports. We considered slit-shaped pores
obtained from� ve model materials: silica, alumina, MgO,
calcite, and muscovite, which represent minerals typically
found in the inorganic matter of shale formations.9� 13 Details
about the fabrication of the model materials have been
reported elsewhere.36� 43 Characterization of the� ve solid
supports and comparisons, in terms of free energy landscapes
and methane solvation free energies, are discussed by Bui et
al.23 Further characterization of hydrated silica, alumina, and
MgO pores has also been achieved by calculating potential of
mean force pro� les.22 In the models implemented here, all the
nonbridging oxygen atoms on silica and alumina surfaces were
protonated; MgO, muscovite, and calcite surfaces were not
hydroxylated. The latter modeling choice is an oversimpli� ca-
tion, as discussed by Bui et al.23 and Phan et al.,22 but it allows
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us to understand, computationally, the e� ects of� uid� solid
interactions on� uid transport under con� nement. The
substrates have a surface parallel to theX� Y plane of the
simulation box. TheX andY dimensions of the substrates are
shown inTable 1. Each pore was obtained by separating the

solid substrates along theZ direction, which is perpendicular to
theX� Y plane. TheZ dimension of the simulation box, which
includes pore and substrate, is also presented inTable 1for
silica, MgO, alumina, calcite, and muscovite pores. These
dimensions allowed us to maintain the pore width at 5 nm in
all the systems considered. To obtain pores with width 10 nm,
theZ dimension was increased (seeTable 1). The pore width
was de� ned as the shortest center-to-center distance between
surface oxygen atoms across the pore volume. We also
considered one pore of width 25 nm made of calcite.

2.2. Force Fields.We used the force� elds previously
employed by Bui et al.23 To simulate silica, MgO, alumina, and
muscovite, we implemented CLAYFF, while calcite was
described using the force� eld developed by Xiao et al.44,45

In the calcite substrate, calcium and carbon atoms were kept
rigid, whereas the oxygen atoms were allowed to move freely.
In the other materials, silicon, aluminum, and oxygen atoms
were held at� xed positions, while the surface hydroxyl
hydrogen atoms were allowed to vibrate. All atoms in MgO
were kept rigid.

We implemented the transferable potentials for phase
equilibria in the united atom formalism (TraPPE-UA) to
model methane in all solid substrates, except calcite.46 In the
latter substrate, to be consistent with Bui et al., we used the
OPLS-UA force� eld to model methane.47 Both TraPPE-UA
and OPLS-UA force� elds yield values for the self-di� usion

coe� cient of methane that are in relatively good agreement
with experiments. According to Ho et al., the % deviation
between MD simulations at 300 K using the TraPPE-UA and
experiments at 297 K is 1%� 6% for pressures between 50 and
300 atm.48 Feng et al. reported deviations between the
di� usion coe� cient of methane calculated using the OPLS-AA
force � eld and experiments in the range 1� 4% when the
temperature is 295 K and the pressure ranges between 11 and
207 MPa.49

In the present simulations, nonbonded interactions were
modeled by means of dispersive and electrostatic forces. The
electrostatic interactions were described by the Coulombic
potential, with long-range corrections treated using the particle
mesh Ewald (PME) method.50 Dispersive interactions were
modeled by 12-6 Lennard-Jones (LJ) potentials. The LJ
parameters for unlike interactions were determined by
Lorentz� Berthelot combining rules from the values of like
components.51,52 The cuto� distance for all interactions was
set to 1.4 nm. We did not apply long-range corrections
because, according to Siperstein et al., consistency in the cuto�
radius is more important than the inclusion of long-range
corrections to the energy.53

2.3. MD Simulation Setup and Algorithms. The
simulation setup for the pores considered in this study mimics
the one introduced by Bui et al.,23 which was implemented to
investigate methane transport through hydrated 1 nm-wide
nanopores. To directly compare results among the� ve
substrates, we kept the overall� uid density at 0.01314
atoms/Å3 � 0.350 g/cm3 in all pores. To prepare systems
with the desired density, we simulated the slit pores
surrounded by a bulk reservoir within a periodic simulation
box. We monitored the pressure at the bulk reservoir regions
using the density pro� les and the Peng� Robinson equation of
state, while simulating di� erent amounts of methane, under the
assumption that the methane in the bulk region behaves like a
macroscopic� uid. The methane molecules were initially added
to the reservoir. The temperature was kept at 300 K for all
substrates. As the simulations progressed, some� uid molecules
entered the pore. Once the reservoir pressure for all substrates
was constant at 87 MPa, we counted the molecules that had
entered the� ve pores. We then removed the reservoir and
inserted the desired amounts of methane to the 5 pores, which,
because of periodic boundary conditions, were now e� ectively
in� nite alongX and Y dimensions. It was necessary to
introduce 3450, 3758, 3068, 2874, and 2284 methane

Table 1. Simulation Box Dimensions Used To Simulate 5
nm (Z1) and 10 nm (Z2) Wide Pores Using Five Solid
Supports

dimensions in nm

substrate X Y Z1 Z2

silica 5.20 10.10 8.30 13.30
MgO 5.50 10.40 7.50 12.50
alumina 5.12 9.12 7.41 12.41
calcite 4.86 9.00 9.90 14.90
muscovite 4.73 7.35 8.50 13.50

Figure 1.Schematic of the MD simulation setup (left), the criteria for determining the 3 regions that describe the density of con� ned methane
(middle), and a 2D slice of a typical 3D KMC simulation setup (right). In the left panel, for visualization purposes, the solid support is silica. The
dashed red lines in the middle panel identify Regions 1, 2, and 3 and serve as guides to the eye.
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molecules in the 5 nm-wide silica, MgO, alumina, calcite, and
muscovite pores, respectively. For the 10 nm pores, we used
exactly double the number of molecules just listed. For all solid
substrates, the simulation box is periodic in the three
directions. A representative simulation snapshot is shown in
Figure 1.

An alternative simulation method for determining the
amount of gas adsorbed in the slit pores for given temperature
and pressure is grand canonical Monte Carlo.54,55 We
preferred here the 2-reservoir method coupled with solving
the Peng� Robinson equation of state due to simplicity and
computational e� ciency. We focus here on one set of
temperature and pressure, although it should be noted that
realistic reservoir conditions show a range of pressures and
temperatures. The e� ect of temperature and pressure on
supercritical methane transport through slit-shaped pores has
been recently reported by Wang et al.21 for various minerals.

We performed EMD simulations in the canonical ensemble
(NVT) by maintaining a constant number of particles (N),
simulation volume (V), and temperature (T), using GRO-
MACS, version 5.1.1.56,57 The temperature was kept constant
at 300 K using 3 Nose-Hoover thermostats, to better control
the gas temperature and avoid unphysical phenomena. In the
thermostats, the relaxation time was set at 100 fs.58,59 Two
thermostats were used to control the temperature of the top
and bottom solid surfaces, and one was used to keep the
temperature of the methane constant. The leapfrog algorithm
was used to solve the equations of motion with 1 fs time step.60

To equilibrate the systems, we performed one NVT simulation
for 50 ns for each pore. To con� rm equilibrium was reached,
we tested the convergence of methane’s density pro� le along
the Z direction. We then performed 3 ns production runs at
300 K for each system to collect data. Following the same
protocol, we also performed 3 independent bulk methane
simulations using 1638 CH4 molecules and a cubic simulation
box of size 5× 5 × 5 nm3.

Once the MD simulations were completed, analysis of the
density pro� les for methane in the direction perpendicular to
the pore surface allowed us to identify 3 regions within each of
the pores: Region 1 (R1) and Region 3 (R3) are close to the
solid surface; Region 2 (R2) corresponds to the middle of the
pore (seeFigure 1). As shown inFigure 1, Region 1 and
Region 3 were designed to include the� rst two adsorbed
layers, in which it is expected, based on atomistic MD
simulation results reported in the literature, that the� uid
behavior di� ers from bulk properties. The thickness of Regions
1 and 3 as identi� ed on the various supports is provided in
Table 2.

The data obtained from the 5 nm pores were used as input
for our KMC model to predict the di� usion of methane in slit
pores of varying width, as detailed inSection 2.4.

We tested the validity of the KMC predictions against MD
data obtained for methane within 10 nm-wide pores. In the
case of calcite, as discussed inSection 3.1, we found the
di� usion to be anisotropic and the solid surface to strongly
interact with the methane molecules. To test whether this
e� ect was accurately captured using the KMC model, we also
simulated a 25 nm-wide pore using EMD simulations and
performed an additional comparison between EMD and KMC
results. Due to the high computational e� ort required for these
simulations, we did not consider any other 25 nm-wide pores
in this work. The procedures implemented to simulate 10 and
25 nm-wide pores are similar to those just described for the 5
nm pores.

To analyze the molecular trajectories obtained from EMD
simulations, we calculated density, di� usion coe� cients, and
radial distribution functions (RDFs). For the density analysis,
we used bins of width 0.02 nm, and we counted the number of
molecules as a function ofZ. From the density plots, we
identi� ed Regions 1, 2, and 3 (seeFigure 1for a schematic of
the three regions within the pore). We used the trajectories
within each region to calculate the di� usion coe� cients for
methane in all substrates. We calculated the di� usivity in theX
(Dx), Y(Dy), andZ (Dz) directions, within theXYplane (Dxy),
and also the overall (total) di� usivity (Dxyz), using Einstein’s
relation, on the basis of the calculated mean square
displacements (MSDs):
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In eqs 4and5, � |ri
plane(t) � ri

plane(0)|2� and� |ri(t) � ri(0)|2�
are the MSDs in theXY-plane andXYZspace, respectively, and
ri
plane(t) = (xi(t), yi(t)), and ri(t) = (xi(t), yi(t), zi(t)),

respectively. Simonnin et al.,61 Yeh and Hummer,62 and Le

Table 2. Comparison between the Thicknesses of Regions 1 and 3, the Density, and the Number of Molecules Contained in
the Three Regions within Slit-Shaped Pores of Width 5 (Z1) and 10 nm (Z2)

length (nm) density (atoms/nm3) | molecules

R1 and R3a,b R1 and R3a,b R2

substrate Z1 Z2 Z1 Z2 Z1 Z2

silica 0.70 0.70 13.8| 506 13.7| 505 12.9| 2438 13.0| 5890
MgO 0.64 0.64 14.8| 543 14.2| 520 12.6| 2672 13.0| 6476
alumina 0.82 0.83 12.2| 467 12.0| 466 13.6| 2134 13.4| 5204
calcite 0.63 0.62 16.4| 451 16.8| 456 12.1| 1972 12.6| 4836
muscovite 0.74 0.72 15.0| 385 14.9| 372 12.4| 1514 12.8| 3824

aThe values reported for R1 and R3 represent the average of the two regions.bThe % di� erence between R1 and R3 is less than 5%, con� rming the
hypothesis regarding the symmetric properties in Regions 1 and 3.
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et al.63 reported that the di� usion coe� cients computed using
molecular simulations for� uids con� ned in wide nanopores
su� er from � nite-size e� ects and proposed a correction to
overcome these e� ects. Similarly, Moultos et al. found that the
use of“large” systems of several thousand molecules is not
always adequate for eliminating the dependence of self-
di� usion coe� cients on system size and that explicit
corrections, such as the Yeh and Hummer correction, must
be applied to account for systematic errors.64 Based on the
latter work, Jamali et al. further proposed a Maxwell� Stefan
Yeh and Hummer correction for� nite-size e� ects of computed
Maxwell� Stefan di� usion coe� cients.65 In this study, to
correct for possible� nite-size artifacts and time-dependent
� uctuations, we calculated the di� usion coe� cients via the
analysis of the correlation functions. The time scale for the
di� usion coe� cient calculations was 20 ps of simulation run
time (which corresponds to 100“frames” in the simulation).
After these 20 ps,ri(0) was updated for all molecules. The
process was repeated 150 times, and the average di� usion
coe� cient was obtained.

To ensure that methane is at supercritical conditions, we
calculated the RDFs at the end of each production run using
GROMACS. These data are reported asSupporting
Information.

2.4. 3D Kinetic Monte Carlo Validation. Our KMC
approach, applied to 1D and 2D pore networks, is described by
Apostolopoulou et al.31,34 The underlying model of the KMC
simulation is the Master Equation (eq 6), which can be
thought of as a“probability balance”.33 The Master Equation
expresses the rate of change for the probabilityPp(t) of � nding
the system in statep at timet, in terms of the probability in� ux
from other statesq, and the probability e� ux toward these
other states:66

� �= +
� �

P t

t
W P t W P t

d ( )

d
( ) ( )

p

q p
pq p

q p
qp q

(6)

The state vectorsp andq in eq 6capture the information
necessary to describe the location of di� using� uid particles in
the porous network of interest. A state vector stores the
number of particles contained in each and every voxel of the
network and updates it over time.Wpq and Wqp are the
propensities of thep-to-q andq-to-p transitions, respectively,
and are calculated by multiplying the KMC rate constants for
these transitions by the number of molecules contained in a
voxel. The generic Mastereq 6can be used to describe the
di� usion of a particle from voxeli,j to voxeli,j+1 as follows: in
stateq, voxeli,j hasni,j + 1 particles and voxeli,j+1 hasni,j+1� 1
particles. The probability per unit time (propensity) for the
aforementioned di� usion event to happen is given by the KMC
rate for thei,j to i,j+1 transition multiplied by the number of
molecules in thei,j voxel,ni,j+1. If the transition is performed,
the population in thei,j voxel will beni,j, while the number of
particles in thei,j+1 will be ni,j+1, leading to stateq.

To develop a 3D KMC model, we extended our 2D model
by increasing the number of possible moves a molecule can
make from a voxel from 4 to 6 (left, right, up, down, back, and
forth). The computational e� ciency of the KMC algorithm is
strongly dependent on the matrix mesh, as the computational
cost to select each KMC step scales with the number of
possible events. ConsideringM to be the number of voxels, for
an M × M × M system, there are 6× M × M × M possible
events at each step. The algorithmic steps implemented for our

KMC approach can be found in our recent work.31,34 The
Mersenne Twister MT19937 uniform random number
generator was used to obtain sequences of random numbers
needed for the selection of the event at each step and the
calculation of the time required for the transition to happen.67

We validated our 3D KMC algorithm using analytical and
deterministic methods for a variety of systems. We� rst tested
the model against the analytical solution of the di� usion
equation, seeeq 7, for a homogeneous system with
nonperiodic boundaries. Then, we considered homogeneous
systems with periodic boundaries. At last, we compared the
KMC predictions against MD data for three systems with
increasing heterogeneity and mixed boundaries.
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To compare the 3D KMC against the analytical solution of
the di� usion equation, we considered a 3× 3 × 10 lattice. The
unit cell size was 1 nm, and all boundaries were re� ective. We
uniformly distributed 1350 molecules in a 3× 3 × 3 cube from
origin O (0,0,0), as shown inSection 3.3, while the rest of the
lattice remained empty. The di� usion coe� cient in all voxels
was set at 1× 10� 8 m2/s. We allowed the molecules to di� use
and monitored the population in Voxel 5 (5,1,1) and Voxel 10
(10,1,1) as a function of simulation time. A sample was taken
every 0.01 ns, and the total simulation time was 10 ns. We
performed 10 independent simulations and obtained the
average population over time in the 2 voxels of interest. The
equation of di� usion for a 3D system is shown ineq 7, where 0
� x � lx, 0 � y � ly, and 0� z � lz, D is the di� usion
coe� cient, andC(x,y,z) is the overall concentration of
molecules. For certain types of initial and boundary conditions,
the analytical solution ofeq 7is the product of the analytical
solutions of the three one-spatial-variable problems (Cx(x,t),
Cy(y,t), andCz(z,t)), and henceeq 7can be transformed into
eq 8:68

= * *C t C x t C y t C z t( ) ( , ) ( , ) ( , )x y z (8)

For re� ective periodic boundary systems, where the
molecules are initially distributed in a well-de� ned region
� hx � x � hx, � hy � y � hy, and � hz � z � hz with a
concentration ofC0x, C0y, andC0z, initially distributed in theX,
Y, andZ dimension, respectively, the concentration distribu-
tion over time is described by68
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To validate the accuracy of our 3D KMC model, we
obtained the analytical solution of the di� usion equation (eq
7), which is the product ofeqs 8� 11, and compared stochastic
vs analytical results. We found the stochastic approach to be in
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excellent agreement with the analytical solution of the di� usion
equation (see theResults section).

To test the 3D KMC model for systems with periodic
boundary conditions, we used a 5× 6 × 3 lattice with unit cell
size of 1 nm. The lattice was periodic in all directions, and the
di� usion coe� cient was uniform alongX, Y, andZ directions,
with values ranging from 1.3 to 2.3× 10� 8 m2/s (target
di� usivity). A single molecule was inserted in a random
position and was allowed to di� use. Its trajectory was
monitored for 70 ns, with samples extracted every 0.7 ns.
For every value of the di� usion coe� cient selected (target), we
performed 3 independent runs. From the stochastic trajectories
obtained, we calculated the di� usion coe� cient of the particle
and compared the di� usivity calculated against the input
di� usion coe� cient (target). The results showed perfect
agreement between input and output di� usion coe� cient,
further validating our 3D KMC model.

We previously discussed the appeal of a 2D KMC model to
quantify the e� ect of heterogeneity within a pore network in
terms of medium e� ective permeability.31 We test here the
accuracy of our bespoke 3D KMC model, while considering
systems with strong� uid-surface interactions and increasing
degree of heterogeneity. We used the 5 nm silica setup and
increased the� parameter that describes methane-silicon and
methane-hydroxyl interactions 5 and 25 times. The resulting
force� eld is not realistic, but it provides an arti� cial system
with strong surface-� uid attractions. We used 3000 methane
molecules to� ll each arti� cial system and compared the results
obtained from all three cases. For comparison, we used
di� usion coe� cient values predicted from the EMD
simulations within the three regions (R1, R2, and R3) using
a setup similar to the one presented inFigure 1. We calculated
the overall di� usion coe� cient of methane using EMD
simulations and our 3D KMC model. At the end, we
compared the coe� cients obtained from the two methods
and found the results to be in excellent agreement. For each
system, we performed 3 independent EMD runs and calculated
the mean error using the standard error equation

=
D i
n

Error
STD( ( ))

(12)

In eq 12, STD is the standard deviation,D(i) is the di� usion
coe� cient for each independent run, andn is the number of
independent runs. For these calculations,i = [1,3] and hencen
= 3.

2.5. 3D Kinetic Monte Carlo Setup.The bespoke 3D
KMC model was set up to mimic the EMD slit pore described
in Figure 1. The simulation boxes were periodic alongX andY
directions and re� ective onZ, to represent the pore surface. To
set up the transition rates,rKMC, required to describe the
probability of methane moving from one voxel to another
within the simulation box, we considered kinetic barriers
consistent with the di� usion coe� cients in Regions 1, 2, and 3,
usingeq 1369,70

=r
D
l

KMC
2 (13)

whereD is the di� usion coe� cient, andl is the voxel size. We
did not consider thermodynamic barriers, as there are no pore-
entrance or pore-exit e� ects in the present model. The
di� usion coe� cient values from the EMD simulations, for the
5 nm-wide pores, were used as input for the stochastic KMC
model’s Regions 1 and 3 (seeFigure 1for a schematic). These
values are reported inSection 3.1for each solid support
considered. The di� usion coe� cient assigned to Region 2 in
our stochastic model was obtained from bulk EMD
simulations: 1.91± 0.08× 10� 8 m2/s. We calculated error
bars for all the input values used to feed our KMC model, by
performing 3 independent EMD simulations for each system.
To increase the accuracy and minimize the uncertainty of our
stochastic model, we incorporated the error bars calculated
when assigning the transition rates for our stochastic approach.

To predict the overall (total) methane di� usivity in large
pores, we added the necessary voxels to Region 2. We
considered 35 di� erent pore widths for all� ve substrates. For
each pore width, a single molecule was initially placed at a
random position. The molecule was allowed to move freely
through the simulation box for a total of 70 ns. A sample
monitoring the position of the molecule was taken every 0.7 ns.
This process was repeated 10 times, while starting the
molecule from the same position. At the end of the 10th
iteration, a di� erent random position was selected for the

Figure 2.Schematic of the KMC algorithmic steps performed to simulate methane di� usion through pores of varying widths.
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Figure 3.Planar density pro� le for CH4 near the surface of the 5 substrates (bottom panel) in atoms/Å3. The top panel shows the composition of
the 5 solid supports, as reported by Bui et al.23 Color code: Si = yellow, Mg = tan, Al = pink, K = purple, C = green, Ca = blue, O = red, and H =
white.

Figure 4.Density pro� les for the 5 nm pores (black lines) and the 10 nm pores (blue lines). In the top panel (silica) we provide the comparison
between the 5 and 10 nm density pro� les as a function of the distance from the pore wall.
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molecule, and 10 independent runs followed. We considered
75 initial con� gurations for each pore width simulated. The
simulation protocol for the KMC simulations is presented in
Figure 2. We monitored the con� dence intervals obtained of
the di� usion coe� cient calculated while considering di� erent
pore sizes for each substrate. Because no overlap was observed,
it is concluded that this number of iterations and initializations
allowed us to obtain su� cient statistics for the calculation of
the molecule’s di� usivity.

3. RESULTS AND DISCUSSION
3.1. Data Analysis. Density plots were obtained for

methane inside the 5 and 10 nm-wide pores from EMD
simulations. Using MATLAB, the density pro� les were
integrated, and the total amount of molecules was counted
in all systems, to ensure less than 1% deviation between the
number of molecules in Regions 1 and 3 for both 5 and 10 nm-
wide pores and to con� rm that equilibrium was reached. From
the density pro� les, we identi� ed the 3 regions inside the pore
(seeTable 2) and counted the number of molecules in each.
From the analysis of the density pro� les, we con� rmed that the
regions close to the pore surface (R1 and R3) do not change in
thickness when the pore width increases. We also ensured that
the di� erence between the number of molecules in Regions 1
and 3 was less than 5% for each pore-� uid system. We found
that the number of molecules adsorbed on the pore surface
remains approximately the same (within 5%) when the pore
width is increased from 5 to 10 nm. The numbers of molecules
found within each of the 3 regions within each substrate are
reported inTable 2.

To characterize the structure of the adsorbed methane on
each pore surface, we plotted the surface density for methane
on the 5 systems, as shown inFigure 3. Methane molecules in
the � rst and second adsorbed layer were considered for this
analysis. In some of the substrates, methane shows evidence of
patterning (silica, calcite, and muscovite), while in others the
molecular distribution is rather uniform.

In Figure 4, we show the density pro� les obtained along the
Z direction within the 5 nm (black line) and the 10 nm pores
(blue line). From the analysis of the density pro� les, it is
con� rmed that the density measured in the middle of all pores
remains constant when the pore substrate is changed, and also
when the pore width is increased.

Both Figure 4and Table 2 present the distribution of
molecules in Regions 1 and 3.Figure 4presents the number of
molecules within thexyplane as a function ofz, whileTable 2
reports the total number of molecules counted in thex, y, and
z directions. InFigure 4, for some of the substrates, the
densities for the smaller pores appear as scaled versions of the
wider ones. This is because the area below the density curves is
the number of molecules per unit surface area, an intensive
variable, which is lower for the smaller pores. However, we
note that the number of molecules below the density curves
presented inFigure 4and re� ected inTable 2for Region 1 and
Region 3, as obtained from the 5 and 10 nm pores, does not
di� er. The di� erences observed in the� rst peak of the density
pro� les, for some of the substrates, is possibly related to the
proximity of the solid slabs when the pore width is 5 nm. Our
di� usion coe� cient data (seeFigure 5) also suggest a small
e� ect due to the proximity of the two pore surfaces when the
pore width is 5 nm, compared to data obtained for the 10 nm
pores. Hence, it is possible that although the total number of
molecules in Regions 1 and 3 is similar in 5 and 10 nm pores,
this interference of the parallel slabs causes a slightly di� erent
spatial arrangement of interfacial molecules, which is captured
by the density pro� les presented inFigure 4. However, for the
purpose of this study, these spatial variations are expected to
have an insigni� cant impact on the di� usion coe� cients
predicted for wider pores.

Within each region, we calculated self-di� usion coe� cients
(seeComputational Details). Figure 5summarizes the results
within 5 (panel A) and 10 nm pores (panel B). The error bars
shown in panel (A) are obtained by calculating the standard
error, seeeq 12, from results obtained in 3 independent EMD
simulations. Error bars for panel (B) are not available using the
standard error formula, since the simulations were performed
only once to validate the 3D KMC model and not to be used
as inputs. The di� usion coe� cient close to the pore surface is
lower than in the pore center, where methane exhibits bulklike
behavior. When considering the average values for the 5 nm-
wide silica, MgO, alumina, and muscovite pores, the di� usion
coe� cient in Region 2 is slightly lower than the bulk di� usion
coe� cient, which was calculated to be 1.91± 0.08× 10� 8 m2/
s for CH4 density of 0.01314 atoms/Å3 at 300 K. This is due to
the slightly higher density observed in the middle of these
pores. In calcite, the opposite behavior was observed. This is

Figure 5.Di� usion coe� cients calculated in Regions 1, 2, and 3, as well as in the whole pore (total), within the pores considered in this study.
Panel (A) shows the results obtained for the 5 nm pores, and panel (B) shows those for the 10 nm pores.
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due to the signi� cantly stronger interaction between the� uid
and the calcite surface, which yields a higher number of
molecules absorbed close to the pore surface, leaving the
middle of the pore (Region 2) less crowded, as shown inTable
2. Since fewer molecules are in Region 2, compared to the
other substrates, a higher di� usivity was observed in this
region. Considering the error bars estimated for di� usivity
data, it is observed that all di� usion coe� cient values for
Region 2, besides calcite’s, are consistent with each other. This
con� rms that the molecules found in Region 2 are beyond the
range of surface interactions, when the pores are at least 5 nm
wide. Wang et al. reached a similar conclusion, for simulations
conducted within 5.4 nm-wide slit pores made of montmor-
illonite and calcite and� lled with supercritical methane at
various densities lower than those considered here.21

The di� usion coe� cient in Regions 1 and 3 for each
substrate is similar, as expected. Moreover, the di� usion
coe� cient in the regions close to the pore remains almost
constant when comparing 5 and 10 nm pores. This is expected,
since the number of adsorbed molecules and the thickness of
the adsorbed regions remains unaltered while increasing the
size of the pore. Wang et al. also observed the mass density of
the two adsorbed layers to remain unchanged when simulating
supercritical methane con� ned in 1.8 and 5.4 nm-wide calcite
pores.21 When considering pores of the same material, our
results show that the overall (total) di� usivity increases as the
pore width increases. We will discuss later at which pore width
the di� usivity of con� ned methane reaches values comparable
to those found in the bulk. Our hypothesis is that this increase
in di� usivity with pore width is due to the relative increase of
the Region 2 thickness when pore width increases. In fact,
within Region 2, the di� usion coe� cients are signi� cantly
higher compared to the areas close to the pore walls.

When considering the di� usivity across the whole pore
(Regions 1, 2, and 3),Dx andDy values calculated for silica,
MgO, alumina, and muscovite pores are very similar� less than
1% di� erent, which is an indicator of isotropic di� usion. The
same behavior is also observed when comparing theDx andDy
values in Regions 1, 2, and 3 individually (seeFigure 6).
However, within calcite pores, theDx andDy values in Regions
1 and 3 are signi� cantly di� erent, approximately 33%, 40%,
and 17%, when considering 5, 10, and 25 nm pores,
respectively, as presented inFigure 7. In the middle of the

pore, Region 2, the % di� erence between theDx andDy values
is signi� cantly smaller, as the e� ect of the surface has vanished.
Similar anisotropic e� ects, in the region close to the calcite
surface, were also reported by Bui et al.23 and Franco et al.71

Bui et al. explained the anisotropic behavior of methane in
hydrated calcite nanopores using free energy landscape
calculations to further characterize the pore surfaces, as in
that case the pores were� lled with water. They showed that,
because of the structure of con� ned water, the path of
minimum resistance for methane di� usion along theY
direction is a straight line, while that along theX direction is
zigzaglike.23 Note thatX andY directions are arbitrary; in the
present comparison, we takeX andY directions to be those
shown inFigure 3. Franco et al. also observed methane
di� usivity along theY direction to be higher than that alongX
near the calcite surface for three pore widths.71 Our results
agree with this observation, as shown inFigure 7.

To verify that the thermodynamic conditions inside all pores
correspond to supercritical methane, we plotted radial
distribution function pro� les for methane within the 5 nm
pores. Based on the results obtained (reported in the
Supporting Information), it was con� rmed that methane in
Region 2 is at supercritical conditions within all systems
considered.

Figure 6.Di� usion coe� cients in theX andYdirections, calculated in Regions 1, 2, and 3, as well as in the whole pore (total). Panel (A) shows the
results obtained for the 5 nm pores, and panel (B) shows those for the 10 nm pores.

Figure 7.Analysis of anisotropic di� usion in calcite. They axis shows
the % absolute deviation betweenDx andDy values measured in the
three regions and the whole (total) pore, using 3 di� erent pore
widths.
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3.2. Model Systems with Exceptionally Strong Sur-
face-Fluid Interactions. We performed the analysis dis-

cussed above for silica substrates when the force� elds were
modi� ed to represent exceptionally strong surface-� uid

Figure 8.Density (panel A) and RDFs (panel B) for methane within realistic silica pores, as well as within pores with exceptionally strong solid�
� uid interactions.

Figure 9.Analysis of the surface interaction e� ect on the width of Regions 1 and 3 (panel A), number of molecules absorbed (panel B), di� usivity
in Regions 1, 2, and 3 (panel C), and overall (total) di� usivity predicted using EMD simulations and the KMC model (panel D).

Figure 10.Surface density pro� les for methane on the 3 silica-based systems as a function of surface-methane interactions. Panel (A) shows the
realistic silica surface, while panels (B) and (C) show the surfaces that are 5 and 25 times more attractive, respectively. Methane molecules in the
� rst and second adsorbed layer were considered for this analysis.
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interactions. In these model systems, the methane-silicon and
methane-hydroxyl interactions were increased by 5 and 25
times, as described inSection 2.4. In Figures 8and 9, we
compare the results obtained against those gathered within the
realistic silica substrate. Note that the number of molecules
inserted in the pores was 3000. InFigure 8, we show how the
three systems compare in terms of density pro� les (panel A)
and RDFs (panel B). The di� usion coe� cients calculated in
the three regions are reported inFigure 9(panel C, panel D).

The e� ect of the strong surface interaction is evident from
the density pro� les and RDF plots, shown inFigure 8. To
further characterize the systems, inFigure 10we show the
planar density pro� les parallel to the pore surface for methane
within the second adsorption layer, which is determined from
the density pro� les in Figure 8. According to panel (A),
methane molecules preferably arrange in circles surrounding
the oxygen atoms on the surface. As the interaction between
surface and methane increases (panels B and C), the amount
of methane molecules occupying positions aligned with the
oxygen atoms increases. This is probably because the
maximum number of molecules that can occupy the peripheral
positions surrounding the oxygen atoms has been reached, and
additional molecules have to occupy positions that correspond
to higher conformational energy.

In Figure 9, panel (A), we present the thickness of Regions 1
and 3, as calculated from the density plots. As the solid� � uid
attraction increases, these regions narrow and the methane
density in Regions 1 and 3 increases, which is in qualitative
agreement with the 2D density pro� les presented inFigure 10.
On the contrary, the methane density in Region 2 decreases, as
con� rmed by the density pro� les shown inFigure 8. As a

result, the di� usivity of methane in the 3 regions is expected to
signi� cantly change as the solid� � uid interactions increase.
The number of molecules in the 3 regions within these pores is
summarized inFigure 9, panel (B). As the attraction between
the surface and the� uid increases, the number of molecules
adsorbed on the surface increases, leading to a reduced
occupancy in the middle of the pore.

As the surface-methane attraction increases, the methane
di� usion coe� cient in Regions 1 and 3 was found to drop
signi� cantly, by almost 1 order of magnitude every time the
solid-surface interaction was increased by 5 times, while the
di� usivity in Region 2 increases moderately. However, we
found the overall (total) di� usivity to remain constant. To
explain these observations, our hypothesis is that the following
two e� ects cancel each other out: 1) decreased R1 and R3
thickness, with correspondingly decreased di� usivity, and 2)
increased R2 thickness, withcorrespondingly increased
di� usivity.

3.3. 3D KMC Model Validation.The 3D KMC model was
validated against the analytical solution of the di� usion
equation. To solveeq 8andeqs 9� 11, we considered a lattice
containing 10 columns (X direction), 3 rows (Z direction), and
3 slices (Y direction). All boundaries were re� ective: once a
molecule reached a boundary, it bounced back to the lattice.
1350 molecules were distributed in the� rst third of the system,
as shown in red inFigure 11, panel (A). The di� usion in all
voxels within the lattice was set to 1× 10� 8 m2/s. We
monitored the number of molecules in the 5th and 10th voxels
over time and solvedeqs 8� 11. The results obtained from the
3D KMC and those from the analytical equation are plotted in
Figure 11panels (B) and (C), respectively. Visual inspection

Figure 11.(A) Representation of the 3D KMC nonperiodic system. The red region represents the area where the molecules were initially
distributed. The comparison between the analytical equation and the 3D KMC predictions for (B) voxel 5 and (C) voxel 10, respectively.

Figure 12.Validation of the 3D KMC algorithm using a periodic lattice.
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con� rms satisfactory agreement and shows that the stochastic
results� uctuate around the deterministic ones. The� uctua-
tions could be reduced by performing a larger number of
independent runs and averaging the results.

The 3D KMC model was also tested for a homogeneous and
periodic system. In this case, we set up 6 systems consisting of
5 columns (X direction), 6 rows (Z direction), and 3 slices (Y
direction). We inserted 1 molecule, and we allowed it to
di� use. We collected samples every 0.07 ns during a total of 70
ns of simulations. We then calculated the MSD from the
trajectories and the di� usion coe� cient. Each system was
homogeneous, and the input (target) di� usion coe� cient
varied from 1.3× 10� 8 to 2.3× 10� 8 m2/s. In Figure 12we
present the MSDs calculated from the 6 systems (panel A) and
the comparison between the input (target) and calculated
di� usion coe� cient (panel B) when using the 3D KMC
algorithm.

We � nally tested the e� ect of the unit cell size on the
di� usion coe� cient calculated by the 3D KMC approach. We
found no statistically signi� cant di� erences when using smaller
or bigger unit cell sizes. This con� rms the validity of the 3D
KMC model in representing periodic systems. To test the 3D
KMC model in a heterogeneous system we considered the 3
systems where the surface-� uid interaction was altered (see
Section 3.2). We used the values reported inFigure 9to set the
di� usivity in Regions 1, 2, and 3. We used the algorithmic steps
described inFigure 1but for only 1 value of the pore width.
From the trajectories obtained, we calculated the di� usion
coe� cient from 10 independent runs. The results are
presented inFigure 9panel (D), which shows agreement
between the KMC and EMD approaches, validating the
applicability of the KMC model in heterogeneous systems.

3.4. 3D KMC Predictions of Supercritical Methane
Di� usivity in Pores. In this Section we present the results

Figure 13.Overall the di� usion coe� cient (Dxyz) as a function of the pore width for the 5 solid supports considered here. Comparison between
KMC predictions and EMD data. Note that the deviation between KMC and MD data is less than 10%, in all cases.
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obtained using the 3D KMC approach on the slit pore systems,
using as input the results from atomistic EMD simulations.
Regions 1, 2, and 3 were spatially de� ned within the KMC
lattice based on density pro� les such as those inFigure 4. The
di� usion coe� cients assigned to voxels within each region
were the EMD results ofFigure 5. To predict the overall
(total) di� usivity in pores of increasing width, we followed the
algorithm described inFigure 2. In Figure 13, we present the
results obtained for the pores carved out of the 5 supports, for
widths from 3 to 60 nm. Note that the limit of theX-axis in the
� ve panels shown inFigure 13changes from one system to
another. This is because of the protocol we used to set up the
3D KMC systems, according to which the number of pore
widths was the parameter used to determine the systems (35
pore widths for each substrate), together with the thickness of
Regions 1 and 3, which di� er among the substrates, as shown
in Table 2. The KMC data are shown as blue circles. The error
bars calculated according toeq 12, considering 10 independent
runs, are shown in red. The gray� tted line is a guide to the
eye, and the blue dashed line shows the di� usion coe� cient of
the bulk methane, as calculated from 3 independent EMD
simulations in the bulk. It is helpful to remember that the
density of the bulk methane is set to 0.01314 atoms/ Å3 and
the temperature is 300 K.

In all the pores considered, as the pore width increases, the
di� usion coe� cient of methane increases as well, until it
reaches its bulk value, 1.91± 0.08× 10� 8 m2/s. According to
the results inFigure 13, the supercritical methane con� ned in
MgO and silica slit-shaped pores exhibit bulklike di� usivity
when the pore width is slightly above 30 and 35 nm,
respectively. Within the muscovite pores, supercritical methane
reaches bulk behavior when the pore width is almost 40 nm.
Within the alumina pores, this happens when the pore width is
slightly wider than 37 nm, while in calcite the pore width
required for supercritical methane to achieve bulklike
di� usivity is almost 50 nm. Our hypothesis is that this
substrate-speci� c behavior is due to the preferential distribu-
tion of methane in Regions 1 and 3, near the solid substrates.
While comparing the surface density pro� les within the� rst
adsorbed layer, presented inFigure 3, the MgO substrate
shows the most uniform methane distribution, with silica,
alumina, and muscovite substrates following. However, calcite
exhibits sites that strongly attract methane. In a few pores,
notably within silica, the results seem to suggest that, in some
cases, the di� usion coe� cient for the con� ned methane can be
larger than that in the bulk. We ascribe this to numerical errors,
which are quanti� ed below, as we note that the data points
corresponding to faster di� usion than bulk are consistent with
bulklike di� usion, when the error bars are considered.

In the � ve panels ofFigure 13, we also report the di� usion
coe� cient data obtained by atomistic EMD simulations. For
silica, MgO, alumina, and muscovite, there are 2 EMD data
points, corresponding to 5 and 10 nm pore widths. For calcite,
an additional data point is reported, at 25 nm width. The
deviation between EMD data and KMC predictions in all cases
is less than 10%. For the 5 nm pores, the % deviation is 8.8%,
8.1%, 7.4%, 9.3%, and 4.5% for silica, MgO, alumina, calcite,
and muscovite pores, respectively, while for the 10 nm pores
the % deviations become� 1.3%,� 4%,� 0.8%, 6.1%, and 7.9%,
respectively. FromFigure 13and the % deviations, it appears
that the KMC predictions agree better with EMD data as the
pore width increases. This is because of the di� usion
coe� cient assigned to Region 2. As discussed inSection 3.1,

the di� usion coe� cient in the pores center is very similar to
the bulk value, albeit not identical; calcite exhibited a higher
di� usion coe� cient in Region 2, compared to the bulk, and the
rest of the substrates were slightly lower. It is expected that, as
the pore width increases, the di� usion coe� cient in Region 2
converges to the bulk, and the KMC input for the region
becomes more accurate. This can be further con� rmed by the
25 nm calcite pore, where the di� erence between the EMD
and the KMC values is� 2.3%.

Overall, the deviations between KMC and EMD data are
satisfactorily small and presumably could be further reduced if
more independent EMD simulations were performed and
more accurate inputs were used to initiate the 3D KMC model,
at the expense of increased demands on computational
resources. Additional independent EMD simulations could
also provide error bars and further aid the comparison between
the two approaches. We note that in pores thinner than 5 nm,
each parallel pore surface may interact with� uid molecules
adsorbed near both walls, causing strong deviations from
bulklike behavior within the whole pore, even in its middle. In
this case, the accuracy of the KMC model is expected to
worsen, and the % deviation between KMC and EMD
simulations will potentially exceed the 10% threshold.

It should be emphasized that using the 3D KMC model for
estimating self-di� usion coe� cient in pores with varying pore
width provides accurate results at very low computational cost.
For the 5 nm pores considered, e.g., we performed atomistic
EMD simulations for 53 ns for each solid. The time required
for these calculations, using a supercomputer, ranged between
30 and 42 h; the time required for conducting atomistic EMD
simulations within the 10 and 25 nm simulations was higher, as
the number of molecules increased. By comparison, the time
required for the KMC simulations, per substrate, was
approximately 35 min on the supercomputer to predict self-
di� usion coe� cient in pores of 35 di� erent pore widths. The
nodes used to perform these simulations consisted of 2 Intel
Xeon E5-2683 v4 cores with 128 GB total RAM. For each pore
width, 75 di� erent initial con� gurations were tested in one
simulation run, and 10 independent runs were performed,
leading to a total of 26,250 simulations. This amount of
simulations takes approximately 4 h on a standard desktop
computer, on which it would be prohibitive to conduct
atomistic EMD simulations. Admittedly, transport models such
as those discussed inSection 1, could be used to generate
digital libraries similar to those shown inFigure 13. However,
to make those models applicable for the systems investigated
here, a certain number of parameters, usually obtained from
EMD data, should be� tted to describe each substrate.72

A numerical integrator of Langevin’s equation of motion
could also be implemented, instead of the KMC approach
proposed here, to describe the time evolution of a system.73,74

It has been reported that the selection of the integration step
has a pivotal impact on the accuracy of the results obtained by
implementing Langevin’s approach, with shorter integration
steps yielding more accurate results at the expense of higher
computational cost. Similarly, several independent runs should
be performed to ensure that accurate results are achieved when
implementing the KMC protocol, which leads to increased
computational cost. It is however expected that the KMC
approach presented here could yield predictions for larger
spatial scales and longer temporal scales than those achievable
by solving Langevin’s equation of motion, because the
stochastic KMC approach does not require resolving the
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di� usive trajectories of individual particles. For completeness,
it should be noted that an innovative approach to numerically
solve the Master Equation (eq 6) was proposed by Kolokathis
and Theodorou,75 who simulated di� usion of xenon in
silicalite-1. Their numerical approach was faster than KMC
simulations, than solving numerically the Master Equation
using the Euler method, and MD simulations by factors of
� 104, 103, and 107, respectively. An alternative approach could
also implement the work of Zaragoza et al.,76 who proposed an
equation that correlates di� usion coe� cient and the viscosity.
When considering wide pores, where the� uid viscosity is
isotropic and homogeneous, this equation could produce
results similar to those obtained from MD or the 3D KMC
simulations discussed in this study.

4. CONCLUSIONS
We proposed and validated a methodology that synergistically
implements atomistic equilibrium molecular dynamics (EMD)
simulations and stochastic 3D kinetic Monte Carlo (KMC)
calculations to predict self-di� usion coe� cients for pure gases
con� ned in pores as a function of pore width. In our analysis,
we considered slit-shaped pores, but the methodology can be
applied to cylindrical or rough pores as well. We started by
performing atomistic EMD simulations in pores of moderate
width (5 nm), and we used representative data, obtained
within 3 regions within the pores, as input to construct a
bespoke 3D KMC model that represents slit-shaped pores. We
then implemented a sophisticated simulation protocol to
obtain di� usion coe� cients as a function of the pore width.
The number of iterations and initializations implemented in
this protocol ensured that the KMC data obtained for the
various pore widths were statistically di� erent.

Our proposed methodology acknowledges advantages and
disadvantages of EMD and KMC approaches and implements
each in the most e� cient and impactful way. EMD simulations
provided detailed and accurate atomic-scale data, which are
necessary for obtaining accurate KMC calculations, at the
expense of long run times. Because the computational time
required by KMC is signi� cantly shorter than that required by
EMD, the KMC model was used to predict the methane
di� usivity in pores of increasing pore width. Comparing KMC
predictions to EMD simulations in pores of width 10 and 25
nm, we found that the % deviation between the two methods is
less than 10% for all cases considered here. The combined
EMD-KMC approach allowed us to obtain a digital library that
matches di� usivity to pore widths and pore chemistry at
minimum computational cost. Within the pores considered, it
was found that con� nement reduces the methane di� usivity,
and that bulklike di� usivity is reached when the pore width is
at least 30 nm, and in some cases more than 50 nm, depending
on pore chemistry. This digital library can be used, in the
future, to simulate realistic 3D pore networks.

The methodology proposed is expected to be applicable to
study gases at di� erent densities and temperatures, as well as
mixtures. While the approach is expected to be useful for
predicting gas permeability in shale samples, many applications
that involve� uid transport across pore networks, including
catalysis, could bene� t from the methodology presented here.
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