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1 LƴǘǊƻŘǳŎǘƛƻƴ 

1.1 General Context  

For developers of deep geothermal projects, the largest economic risks result from 
insufficient knowledge of subsurface conditions. Non-optimal reservoir conditions or 
reservoir development strategies can lead to poor reservoir performance and the occurrence 
of induced seismicity, in particular in the case of enhanced geothermal system (EGS) 
developments.   

While hydraulic flow restrictions are frequently detected immediately after drilling and 
testing ŀ ΨŘǊȅ ǿŜƭƭΩΣ ƛƴŘǳŎŜŘ ǎŜƛsmicity can, in principle, occur at any time during geothermal 
operation (drilling, testing, production). For example, several EGS projects had to be 
abandoned already at an early stage after comparatively strong earthquakes were induced 
during initial well stimulation, e.g. at Basel/Switzerland [1] or Pohang/Korea [2]. Recent cases 
of felt seismicity during development of the geothermal sites at Balmatt/Belgium [3] and 
Vendenheim/France are currently under investigation and the consequences for the projects 
are not yet clear. 

Induced seismicity may also set in at a later stage of geothermal production only. For example, 
the geothermal production rate at the Landau/Germany geothermal site had to be reduced 
after felt seismicity had occurred following two years of geothermal production [4]. Similarly, 
two geothermal doublets were abandoned after several years of production due to induced 
seismicity at Californië/The Netherlands [5]. Clearly, a detailed understanding of the induced 
seismicity risks and the possibilities for risk mitigation, e.g. through site selection and system 
design, is a prerequisite for upscaling the technology.   

Within Task 7.4 ς Ψ±ŀƭƛŘŀǘƛƻƴ ƻŦ ǘƘŜ ŦƭǳƛŘ ƳƛƎǊŀǘƛƻƴ ƳƻŘŜƭǎΩ ς of the S4CE project, we use 
physics-based, numerical models for studying geothermal reservoir performance and the 
potential for induced seismicity. This task builds on our results achieved within Task 5.4, 
where we have compiled numerical fluid flow models for the United Downs Deep Geothermal 
Power (UDDGP) project in Cornwall, UK and developed a new methodology (named SHPM) 
for inferring in situ hydraulic pressure changes from induced seismicity observations [6]. 
Within Task 7.4 we investigate how fluid flow models can be further refined and calibrated. 
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Figure 1: Original workflow. Prior to calibration, competing fluid flow models result in a forecast range which will narrow 
down in the course of project development. 

Our original workflow is schematically depicted in Figure 1: Fluid-flow models are compiled 
using a set of input parameters, which can be based on observations as well as on 
assumptions. Uncertainties of input parameters result in multiple fluid flow models, each 
model representing a possible combination of parameter values. Several (competing) 
numerical fluid flow models may therefore exist for the same geothermal reservoir.  

Fluid-flow models are used for numerically simulating the thermo-hydraulic reservoir 
ǇŜǊŦƻǊƳŀƴŎŜ ŀƴŘ ǘƘŜ ƛƴŘǳŎŜŘ ǎŜƛǎƳƛŎƛǘȅ ǊŜǎǇƻƴǎŜ ǘƻ ƎŜƻǘƘŜǊƳŀƭ ƻǇŜǊŀǘƛƻƴǎ όΨaƻŘŜƭ 
CƻǊŜŎŀǎǘΩύΦ ²ƛǘƘ ƛƴŎǊŜŀǎƛƴƎ ƪƴƻǿƭŜŘƎŜ of subsurface conditions in the course of project 
development, parameter uncertainties reduce (i.e. the number of competing fluid flow 
models reduces), thereby systematically narrowing down the forecast range. 

An important component for calibrating fluid flow models against observations is the SHPM 
methodology. In principle, SHPM can provide information on hydraulic pressure evolution at 
various locations in the reservoir, thereby reducing or even eliminating the typical ambiguity 
associated with hydraulic model matching. Within Task 7.4 we investigate, for the first time, 
how SHPM observations can be used for model calibration with reference to field sites 
accesible to the S4CE consortium.  

Our main showcase is the UDDGP project, where two deep wells were drilled during the 
course of the S4CE project. As the overall project development at UDDGP is delayed, well 
testing and possible reservoir stimulation were not completed at the time of writing (Figure 
2). In particular, the number of seismic events induced so far at UDDGP is too small for 
applying the SHPM methodology. 
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Figure 2: Timeline of drilling and testing activities at UDDGP.  

Therefore, model refinement at UDDGP is restricted to updating input parameters using the 
most recent observations, while model calibration using SHPM is studied based on alternative 
data sets from two geothermal projects in Australia. The modified workflow is shown in Figure 
3.  

 
Figure 3: Modified workflow followed in Task 7.4. Due to the delay at UDDGP no data is available (yet) for calibrating the 
fluid flow model(s) using SHPM. Instead, the SHPM calibration procedure is developed and studied using alternative 
data sets.  

1.2 Deliverable Objectives 

This deliverable D7.2 ς ΨValidation of the fluid migration modelsΩ ς describes the approach to 
calibrate models for fluid flow in the subsurface, the workflow, and the rationale behind it. 
The deliverable includes a framework for making prognoses of reservoir performance and 
induced seismicity response based on the subsurface information available at a certain stage 
of geothermal project development. For UDDGP, the potential for felt or even damaging 
seismicity is considered for the entire lifetime of the geothermal system. Stress changes 
associated with reservoir cooling are explicitly considered by numerically simulating coupled 
thermo-hydraulic-mechanical processes. 

Part of this deliverable is the development of an approach for calibrating fluid flow models by 
relative pressure changes inferred through the SHPM method developed in Task 5.4.  
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This deliverable aims at improving economic risk management, which is a pre-requisite for 
scaling up the EGS technology. It is perfectly in line with the general objectives of the S4CE 
project in terms of (i) assessing environmental risks associated with geothermal projects and 
(ii) optimizing their economics for supporting technology up-scaling. 

 

2 aŜǘƘƻŘƻƭƻƎƛŎŀƭ !ǇǇǊƻŀŎƘ 

In this chapter, we describe the methodological approaches used for refining and calibrating 
sub-surface fluid flow models.  

Two concepts of fluid flow models are in discussion for UDDGP: a fault-dominated model, 
where the reservoir is confined to a narrow fault zone, and a complex fracture network model 
consisting of more than one hydraulically active zone at the same time. With the current level 
of in situ observations at UDDGP, it cannot be discriminated yet which concept applies to this 
project site. Although induced seismicity observations (sections 3.1.2 and 3.1.3) may favour 
an interpretation where hydraulic processes are dominated by a narrow fault zone, we 
acknowledge that observation data is sparse. Therefore, an alternative approach based on a 
discrete fracture network (DFN) is introduced in section 2.1.2. 

In section 2.2, we describe our general approach for using relative pressure changes inferred 
from induced seismicity as additional observation points for model calibration (SHPM). The 
applicability of the methodology is not restricted to a specific geothermal project but requires 
a fault-dominated reservoir.  

2.1 UDDGP Fluid Flow Models and Model Forecast 

2.1.1 Fault-dominated Models  

Two types of modelling approaches are used for the numerical simulations.  

The first modeling approach is suited for studying induced seismicity in the early project 
phase, when hydraulic processes dominate over thermal effects. With this approach, 
developed in Task 5.4, we simulate Darcy flow in a 2D fault embedded into an impermeable 
rock matrix. Numerical simulations were performed using Comsol Multiphysics©. Dynamic 
processes (i.e. fault slip) were simulated by embedding an additional software module, which 
is based on the slider-block concept, e.g. [7]. Fluid flow and dynamic processes are coupled, 
thus accounting for the local permeability increase after slippage due to self-propping. 
Numerical model parameters are summarized in Table 1. These parameter values reflect the 
most recent subsurface model for the UDDGP site. For technical details of the model setup, 
we refer to [8].   

The second modeling approach is designed for studying seismicity induced during long-term 
geothermal production. While induced seismicity in the early project phase is dominated by 
direct hydraulic effects, thermo-mechanical stresses accumulate over the lifetime of the 
geothermal system and can become significant at a later stage [9]. To account for these stress 
contributions, numerical simulations of thermo-hydraulic-mechanically coupled 3D models 
(THM) were performed using Comsol Multiphysics©. In these models the reservoir consists 
of a subvertical target fault embedded in granite rock (Figure 4). Darcy flow in an effective 
porous medium is assumed with the surrounding matrix permeability several orders of 
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magnitude smaller than the fault permeability (Table 2). Consequently, flow in the numerical 
model predominantly occurs in the target fault. Different to our first approach we do not 
simulate the dynamic process of earthquake nucleation, but estimate the maximum 
earthquake magnitude from the (coherent) fault area exhibiting positive Coulomb stresses. 
Compared to dynamic simulations, this approach is less sensitive to details of reservoir 
properties, thus being more suited for studying maximum earthquake magnitude over a 
longer timescale. The approach, however, does not yield an earthquake catalogue.   

 

 
Figure 4: Geometry and gridding of the fault dominated fluid flow model for UDDGP. The 3D FE model consists of a steeply 
dipping fault with 5 m thickness embedded into a low permeable matrix. Fault trajectory and the location of the injection 
well UD-2 are outlined by dense gridding. 
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Table 1: Parameter of the pseudo 3D fault dominated flow models used for making short-term seismicity prognoses at 
UDDGP. Parameter values reflect the most recent subsurface model for the UDDGP site. Note: The fault orientation refers 
to the planar structure outlined by the induced seismicity distribution (section 3.1.3). The assumed fault orientation 
exhibits approximately the same level of shear- and normal-stresses as the Porthtowan Fault zone oriented 157°/ 85°. 

Parameter Value 

Fault porosity 0.02 

Unstimulated fault 
transmissibility 

0.01 Dm 

0.1 Dm 

1.0 Dm 

Stimulation factor 10 

Fault dip  
82°  

85° 

Fault strike 287° 

Fault thickness 5 m 

sH orientation 133° 

Stress gradients 

sH=25.99 MPa/km + 5.9 MPa 

sh=13.21 MPa/km + 3 MPa 

sv=25.99 MPa/km 

Coefficient of friction 0.8 

Fault cohesion none 

Pressure cap 5 MPa 

Flow rate pressure controlled 

Fluid density 999 kg/m³ 

Wellbore radius 0.1 m 
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Table 2: Parameter of the 3D FE fault dominated model used for coupled THM simulation for making long-term seismicity 
prognoses at UDDGP. Parameter values reflect the most recent subsurface model for the UDDGP site. 

Parameter Value 

Fault porosity 0.02 

Matrix porosity 0.002 

Fault permeability 8e-13 m² 

Matrix permeability 1e-17 m² 

Fault dip  85° 

Fault thickness 5 m 

Coefficient of friction 0.8 

Fault cohesion 
4 MPa  

10 MPa 

sH orientation 133° 

Stress gradients 

sH=25.99 MPa/km + 5.9 MPa 

sh=13.21 MPa/km + 3 MPa 

sv=25.99 MPa/km 

Poisson's ratio 0.22 

Young's modulus 60 GPa 

Temperature gradient 33° C/km +10° C 

Temperature injected fluid 35° C 

Flow rate 20 l/s 

Fluid density 999 kg/m³ 

Fluid heat capacity  4200 J/(kg·K) 

Dynamic viscosity of fluid 0.0002 Pa·s 

Compressibility of fluid 4e-10 1/Pa 

System lifetime 30 y 

Wellbore radius 0.1 m 
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2.1.2 DFN-based Models 

Compared to a single fault, the opposite end-member scenario is a complex fracture network. 
!ƭǘƘƻǳƎƘ ƻōǎŜǊǾŀǘƛƻƴǎ ŦǊƻƳ ƻǘƘŜǊ 9D{ ǎƛǘŜǎ Ƴŀȅ ŦŀǾƻǳǊ ǘƘŜ ŜȄǇŜŎǘŀǘƛƻƴ ƻŦ ŀ ΨǎƛƴƎƭŜ Ŧŀǳƭǘ 
ǎŎŜƴŀǊƛƻΩΣ ǘƘŜ Ǉƻǎǎƛōƛƭƛǘȅ ǘƘŀǘ ǘƘŜ ǘŀǊƎŜǘ ȊƻƴŜ ŀǘ ¦ƴƛǘŜŘ 5ƻǿƴǎ ƛǎ ŎƘŀǊŀŎǘŜrized by a complex 
(flowing) fracture system cannot be ruled out based solely on the current knowledge 
regarding the UDDGP reservoir. 

A discrete fracture network (DFN) is a description of fracture parameter (orientation, size, 
aperture) and fracture network characteristics (fracture set orientation, density, spacing, 
connectivity) here derived from geophysical borehole images (essentially a scanline sampling 
along wellbore). We did not directly simulate fluid flow on fractures. Instead, we have 
calculated equivalent permeability based on the fracture statistics derived from observations 
to represent the DFN. This continuum approach requires calculation of equivalent grid-based 
permeability tensors from a DFN as described by [10]. 

Two DFN are considered and implemented as equivalent permeability tensors in the model: 
a background fracture network (bFN) representing the unfaulted granite and a fault zone 
fracture network (fzFN) derived and simplified from image logs in UD-1 and describing the 
Porthtowan Fault zone. 

Fracture networks characteristics are known to change with depth where changes in 
temperature and pressure dependent rheology influence the fracture process and increasing 
lithostatic pressure tends to close fractures. Additionally, in the UDDGP case, the 
emplacement of late stage ore bearing structures (veins, loads and elvans) in the roof of the 
Carnmenellis pluton make the picture even more complicated. We have undertaken several 
attempts to correlate fracture network characteristics with depth, but no satisfactory solution 
was found so far due to the complexity and because no geophysical logging has been 
performed in UD-2. 

However, for UDDGP we assumed that: 

¶ Fracture intensity tends to decrease with depth in both the host rock (Carnmenellis 
granite) and within the PTF, for various reasons (intersections of faults, deformation 
history, ductile-britt le transition, ...) and to different degrees.  

¶ In fault zones, fracture intensity is significantly increased in relation to the immediate 
surrounding host rock. 

¶ Fracture length distribution cannot be assessed by fracture data from well logs and is 
assumed to follow a distribution function.  

¶ Fracture aperture (either mechanical or hydrologic) can be measured directly from 
image log. Another way is to use dilation tendency calculated for the observed 
fracture planes in a given stress field as a proxy for fracture aperture.  

¶ Only (partly) open fractures effectively contribute to the permeability of the fracture 
network. Therefore, closed fractures or fractures with dilation tendency below 0.5 are 
disregarded for calculating the equivalent permeability tensor. 

DFN models were created for both the background fracture network (bFN), representing the 
unfaulted granite, and for the Porthtowan Fault Zone fracture network (fzFN). From these 
DFN models, equivalent grid-based permeability tensors were calculated as described by [10]. 
These works were performed using the software suite FracMan®. 
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The import of equivalent permeability previously calculated from the DFN models into a 3D 
subsurface model of the UDDGP project, as well as the subsequent simulation of geothermal 
well operation, was performed with the FEM software FEFLOW. Darcy flow in an effective 
porous medium is assumed. In this approach, in contrast to the models described in 2.1.1, the 
PTF is modelled as an extensive fault zone of several hundreds of meters width, which is 
contained by the Great Western xc and the Great Eastern xc. The location of these structures 
at ground surface is known from outcrops. Image log interpretations from GeoScience Ltd. 
suggest that UD-1 intersects the Great Eastern xc at 4,060 m MD and the Great Western xc at 
4,700 m MD. UD-2, according to said interpretations, intersects the Great Eastern xc at 2,100 
m MD and does not intersect the Great Western xc. The model geometry of the PTF was 
constructed by interpolating between these specified locations and extrapolating to a depth 
of 8 km (whereby we assume that the brittle PTF extends significantly beyond the depth of 
UD-1.). This results in a minimum and maximum width of the PTF of approx. 300 and 500 m, 
respectively. The lateral extension of the fault zone in the model is approx. 2 km, restricted 
by the given lateral extent of the cross-courses at surface.  

The model comprises a block of 8 km (width, length) and 9.2 km depth. The PTF is embedded 
into a low permeability rock matrix. Fluid injection through UD-2 and fluid production through 
UD-1 occurs in a single point, respectively, at or near the locations where major fluid losses 
were observed during drilling. In the model, the injection point is located at a depth of approx. 
2,100 mSS and the production point is located at approx. 4,404 mSS. 

Thermohydraulic simulations of 30-year geothermal well operations are performed with a 
focus on pressure and temperature development in the vicinity of the wells.  The focus of this 
investigation does not lie on mechanical processes and risk of induced seismicity related to 
the geothermal operations. Instead, the results of this approach provide insight into how well 
the reservoir may be suited for long-term geothermal operation in terms of productivity, 
injectivity and energy output, based on the assumption of a DFN-type reservoir. 

 

   

Figure 5: Geometry and gridding of the DFN based fluid flow model for UDDGP. Left: View approx. parallel to PTF strike 
direction (i. e. towards NNW). Right: View approx. perpendicular to PTF strike direction (i. e. towards ENE). PTF is shown 
in apricot. Yellow lines show UD-1 and UD-2 trajectories. Fluid is injected through blue point and produced from red point, 
both within the PTF. Gridding is displayed only for elements on the boundary surfaces of the model. 
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Table 3: Parameters of the DFN based fluid flow model for UDDGP. ±ŀƭǳŜǎ ƳŀǊƪŜŘ ǿƛǘƘ άόϝύέ ŀǊŜ ŜȄǇƭŀƛƴŜŘ ƛƴ ŘŜǘŀƛƭs in 
section 3.1.6. ±ŀƭǳŜǎ ƳŀǊƪŜŘ ǿƛǘƘ ά(**ύέ are given at 10 °C and they vary with model temperature. 

Parameter Value 

Fault zone porosity 0.02 

Matrix porosity 0.002 

Fault zone permeability 1e-18 ς 1e-14 m2 (*) 

Matrix permeability 1e-18 ς 1e-16 m2 (*) 

Fault zone dip 82° 

Fault zone thickness 300 ς 500 m 

Temperature gradient 33 K/km (with 10 °C at ground level) 

Temperature injected fluid 35° C 

Flow rate 20 l/s 

Fluid density 999.793 kg/m3 (**) 

Fluid heat capacity 4200 J/(kgϊK) 

Solid heat capacity 2520 J/(kgϊK) 

Fluid thermal conductivity 0.65 W/(m ϊK) 

Solid thermal conductivity 3.0 W/(m ϊK) 

Dynamic viscosity 1.124 mPaϊs (** ) 

Fault zone storage compressibility  1e-6 1/m 

Matrix storage compressibility 1e-7 1/m 

System lifetime 30 a 

2.2 SHPM Model Calibration  

The SHPM method developed in Task 5.4 yields relative changes of fluid pressure 
Ўὖ ►ȟЎὸ at unevenly spaced reference points located at positions r and measured over 

different time intervals Dt=tj-t i (i,j denoting occurrence time of slip at reference point r). For 
technical details we refer to D5.2 and [6]. 

Any direct interpretation of Ўὖ ►ȟЎὸ is complicated due to the unknown reference 

pressure P0(r) which may vary depending on location r. 

For relating Ўὖ ►ȟЎὸ to reservoir permeability, we use the forward solution 

Ўὖ ►ȟЎὸ provided by a numerical fluid flow model which we compare to SHPM pressure 
changes. Based on this comparison, the performance of a particular fluid flow model can be 
evaluated. It is, however, not trivial to define a framework for adapting fluid flow model 
parameters such that Ўὖ ►ȟЎὸ is better matched. We experimented with several 

approaches relating deviations between SHPM and modelled pressure changes to local 
permeability and also tested a systematic search in the parameter space. Our preferred 
approach, however, is a nonlinear optimization algorithm which outperformed the alternative 
attempts tested here. The NelderςMead algorithm [11] is a commonly applied numerical 
method used to find the minimum of an objective function in a multidimensional space. It is 
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a direct search method (based on function comparison) and is often applied to nonlinear 
optimization problems. 

For model calibration (section 3.2.1.3) we have defined the following objective function: 

 

Equation 1 

έὦὮ
ρ

ς
ÍÅÁÎɫȟЎὖ ►ȟὸ Ўὖ ►ȟὸ 

ρ

ς
άὩὥὲɫЎὖ ὸ Ўὖ ὸ   

 

with Ўὖ ►ȟὸ denoting interpolated values of Ўὖ ►ȟЎὸ in time and Ўὖ ὸ and 

Ўὖ ὸ denoting measured and numerically simulated pressure changes at the wellbore.  

With this definition, we equally weight the set of inferred SHPM pressure changes and the 
pressure changes measured at the wellhead. Model optimization with the NelderςMead 
algorithm was implemented using scripting in Matlab©, while the fluid flow simulations were 
performed with Comsol Multiphysics© assuming Darcy flow. Poro-elastic effects were not 
considered. 

3 {ǳƳƳŀǊȅ ƻŦ !ŎǘƛǾƛǘƛŜǎ ŀƴŘ wŜǎŜŀǊŎƘ CƛƴŘƛƴƎǎ 

Explanatory notes (for further details please refer to the Consortium Agreement):  

¶ Due to the delay in the UDDGP project, only a small data set of induced earthquakes 
was obtained from the site. Therefore, the SHPM methodology developed in Task 5.4 
(D5.2) could not be applied for calibrating the UDDGP subsurface model. 

¶ Instead, the approach for calibrating subsurface models based on SHPM was 
developed using an alternative data set from the Cooper Basin/Australia (Habanero#4 
stimulation, section 3.2.1). This is the same data set used already in Task 5.4 (D5.2). 
We have made this data, which is one of the largest induced seismicity data sets in 
EGS, available to the scientific community through IS-EPOS (Task 9.7).  

¶ For demonstrating that applicability of the SHPM approach is not limited to a specific 
data set, we have applied SHPM to two additional data sets (Habanero#1, section 3.2.2 
and Paralana, section 3.2.3). 

3.1 Fluid Flow Models for the UDDGP Site  

A subsurface model for UDDGP has been developed as part of Task 5.4 based on information 
available at that time. As part of the current Task 7.4, the subsurface model has been further 
refined using data acquired during the subsequent drilling of UD-1 and UD-2, respectively. 
Associated observations are described in sections 3.1.1 - 3.1.3.  

Although observations are consistent with the general geothermal development concept of a 
fault-dominated reservoir, the alternative scenario of a complex fracture network is still 
considered as a possibility. Therefore, implications of a heavily fractured reservoir are 
discussed in section 3.1.6.  

Based on our preferred model of a fault-dominated reservoir, we make a prognosis of the 
induced seismicity response in section 3.1.5. 
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3.1.1 Drilling Observations 

Three main lithologies were encountered during the drilling of UD-1 and UD-2 at United 
Downs: metasediments (killas), microgranite and granite. At least four variations of granite 
type persist to the bottom of UD-1, each with a distinctive radioisotopic signature defined by 
concentrations in thorium. Despite the proximity of the two wells, lithological boundaries, 
tend to occur consistently deeper in UD-2, probably due to complex faulting in between both 
wells. The detailed structure of faults at depth could not be resolved as no geophysical logging 
was performed in UD-2. 

The characterisation of reservoir geology is based on drilling parameters, gas shows, mud 
losses, cuttings and wireline logs (in particular image logs) run in UD-1. The following main 
observations are made: 

¶ There is a general decrease of fracture intensity with depth but with an abundant 
evidence of open fractures persisting. 

¶ Four structural domains are defined on the basis of changes in fracture intensity and 
orientation, as well as fracture types and fill character: 

o Domain 1 is characterised by northerly dipping mineralised fractures (i.e. lodes), 
with high fracture intensity (mean 2.1/m) throughout, and by N-S striking 
fractures. 

o Domain 2 is characterised by a decrease in fracture intensity (mean 1.6/m) of 
mineralised fractures (lodes) with depth, more variable fracture intensity probably 
due to faults intersecting the well locally, and a small anti-clockwise rotation in 
fracture strike to NNW. 

o Domain 3 is interpreted as a zone of brittle fracturing (mean fracture intensity 
1.2/m) superimposed on the eastern or hanging-wall side of what may be a pre-
cursor ductile PTF structure represented by the tectonic fabric. There is also a 
further anticlockwise rotation in fracture strike to NW. Clear evidence of a 
fractured volume comes from the drilling parameters, gases, and reduction in 
cuttings size.  

o Domain 4, where a clear reduction in fracture intensity (mean 0.3/m) is observed 
while the tectonic fabric persists, is interpreted as the PTF footwall. However, it is 
noted that a significant mud loss zone occurs within it and that faults interpreted 
in the image log appear to dip SW rather than NE as does the main PTF envelope. 
Also, seismicity was recorded here during drilling the section (section 3.1.2) and 
testing afterwards. 

¶ The overall structural configuration is considered to be the product of episodic 
reactivation phases (Permian to Tertiary) of linked fault systems striking mainly NNW-SSE 
όƛΦŜΦ t¢C ƻǊ ΨŎǊƻǎǎ-ŎƻǳǊǎŜΩ ǘǊŜƴŘύ ŀƴŘ Ϥ9b9-²{² όƛΦŜΦ ΨƭƻŘŜΩ ǘǊŜƴŘύΦ ¢ƘŜǎŜ ǎǘǊǳŎǘǳǊŜǎ ƘŀǾŜ 
both extensional and oblique strike-slip components, the net effect being high levels of 
fracturing and associated (mainly early Permian to Triassic) mineralisation, at least at 
higher levels. 

Figure 6 a) displays the structural data deduced from image logs from UD-1 in the subfurface 
model. Structural complexity is rather high, however due to the scanline data sampling along 
the wellbore trajectory the spatial correlation to observations at surface or in mines still 
remains uncertain due to the large distance and missing clear reference structures/horizons. 
The fracture statistics (Figure 6 b) along the open hole section between 4,000 and 5,200 m 
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MD indicate the PTF to be encountered between 4,200 and 4,450 m MD. Other observations, 
like mud losses while drilling and induced seismicity (as described in the following section), 
indicate a hydraulic active fault at greater depth (at 4,890 m MD). A mismatch in 
interpretation persists regarding the definition (structural vs. hydraulic) of the PTF at reservoir 
depth. From the current data set it is not clear where exactly the PTF, as defined at surface, 
is encountered at depth. The correlation from surface to great depth is not supported by 
structural data from UD-2, where wireline logging has been cancelled due to financial reasons. 
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Figure 6: a) Structural subsurface model updated by fracture inventory interpreted from image logs. Blue discs indicate 
open fractures, black discs faults. b) Fracture statistics along open hole section. The red stippled lines outline the PTF 
based on the fracture statistics alone. However, other observations such as mud losses and induced seismicity indicate a 
much broader fault zone (compare with Figure 13). c) Map view of the reservoir section along UD-1. The stress 
orientation derived from borehole breakout analysis indicate the fractures to be optimally oriented for high dilation and 
slip tendency in a strike-slip regime favouring enhanced fracture permeability.   
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The mentioned mud losses at 4,890 m MD correspond to a sudden high ROP while drilling, a 
clearly visible open fracture zone in the image logs, and a distinct anomaly in the temperature 
gradient (Figure 8). Another anomaly in temperature gradient is seen at 4,250 m MD 
correlating with a pronounced GR peak indicating a high content of mobilized uranium within 
a fracture zone. 

Borehole breakouts interpreted in image and caliper logs indicate a NW-SE SH-orientation, 
parallel to the mean fracture orientation in domain 3 and 4 (Figure 6c)). The optimal 
orientation of the fractures within the in-situ stress field favours enhanced fracture 
permeability due to high dilation and slip tendency.   

3.1.2 Induced Seismicity during Drilling 

As part of Task 7.4, recordings from the local seismic monitoring network were processed in 
near-real-time for detecting even the smallest seismic events during all operational phases. 
Such events can provide important information on the stress-strength state of the intersected 
fractures.  

A highly sensitive STA/LTA detector identified a total number of 18 seismic events associated 
with drilling activities of UD-1 in April 2019.  Event magnitudes are in the range of ML=-2.1 to 
ML=-0.4, corresponding to slipped surface dimensions in the order of meters to tens of 
meters, depending on stress drop. 

! ǎŜƛǎƳƛŎ ǿŀǾŜ ǾŜƭƻŎƛǘȅ ƳƻŘŜƭ ǿŀǎ ΨŎŀƭƛōǊŀǘŜŘΩ ōȅ ŀǎǎƻŎƛŀǘƛƴƎ ǘƘŜ ƘȅǇƻŎŜƴǘŜǊ ƻŦ ǘƘŜ ǎǘǊƻƴƎŜǎǘ 
event on 16th April 2019 with the mud loss zone observed at 4,753 m TVD (4,890 m MD). 
Resulting wave velocities are listed in Table 3. We note that vp/vs ratios determined 
independently from Wadati diagrams are approximately consistent with the velocity model 
presented in Table 3. 

Absolute and relative hypocenter locations could be determined for 17 of these events. 
Results indicate that the events cluster in two areas along the well path (Figure 7). These 
locations can be associated with the two dominating thermal anomalies in logging data and 
with the location of a prominent mud-loss zone (compare Figure 8).  
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Figure 7: Hypocenter locations relative to a master event occurring on 16th April 2019, 21:43:46 UTC. Event symbols are 
scaled to earthquake magnitude with colour denoting occurrence time. Tube shows UD-1 well trajectory with dark shading 
denoting observed mud losses. Transparent plane indicates target fault in current model. 

 
Figure 8: UD-1 log data (gamma ray, temperature, temperature gradient) from 3,940 ς 5,075 m MD. The orange lines show 

the depth of the upper cluster events, which, on average exhibit a vertical location error (2 s) in the order of 200 m. Dotted 
orange line corresponds to the drilled depth at the occurrence time of seismic events όΨǳǇǇŜǊ ŎƭǳǎǘŜǊΩύ. The dotted blue 
line indicates a temperature anomaly potentially correlating with a fracture zone at the upper seismic event cluster. The 
solid blue lines denote the loss zone at the location of the lower cluster of seismic events. 
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We investigated spatio-temporal correlations between earthquake activity and drilling 
operations (Figure 9). The first event of the lower cluster occured within three hours after a 
mud loss zone was intersected at 4,890 m MD. This zone coincides with an anomaly in the 
temperature gradient and open fractures in image log, indicating an open, far reaching flow 
zone (Figure 8). This zone was used for calibrating the seismic velocity model. We speculate 
that the seismic event was caused by fluid overpressure. Based on recorded pumping 
pressure and the drilling mud density in the well, we estimate an overpressure of 14 MPa at 
the open flow zone intersection.  

The upper cluster is less defined. The first seismic event of this cluster occurred during pull-
out of the drill assembly one hour after drilling to 4,417 m MD. Hypocentral depth of these 
events exhibits larger uncertainties. Within their uncertainties, seismic events of the upper 
cluster can be associated with an anomaly in the temperature gradient at 4,250 m MD (Figure 
8, right), indicating another, albeit minor open flow zone. Based on the current data, however, 
we cannot rule out the possibility that the events of the upper cluster occurred on different 
structures. 

 

 

 

 

 

 

Table 4: Seismic velocity model used for hypocenter determination. Station GEL09 was not operated during drilling and 
has been calibrated at a later stage based on induced seismicity observations during the UD-1 injection test (section 3.1.3). 

Station Vp [m/s] Vs [m/s] 

GEL01 6279 3600 

GEL02 6318 3690 

GEL03 5866 3381 

GEL04 5941 3383 

GEL05 5994 3465 

GEL06 5950 3451 

GEL07 6058 3498 

GEL08 6058 3498 

 

Induced seismicity observed during drilling indicates the existence of a steeply dipping, 
permeable and critically stressed fault intersected by UD-1 at approximately 4.9 km MD. 
This fault is interpreted to be the geothermal target fault. 
 
A similar, but less prominent fault (zone) is intersected at 4.2 km MD. 
 
We use the overpressure of 14 MPa, at which seismicity occurred, for estimating a lower 
bound of the stress criticality on the target fault at 4.9 km MD (section 3.1.5). 
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Figure 9: Depth of drilling bit (black) and induced seismic event depth (red) versus time in UTC. Note: Drilling progress 
currently includes only data from 05.04.19, 16.04.19 and 18.04.19. The yellow star corresponds to the depth of the major 
mud loss zone. 

3.1.3 Induced Seismicity during UD-1 Injection Test 

A short injection test was performed on August 2nd, 2020 during which a total fluid volume of 
approximately 100 m3 was injected into well UD-1 at a maximum flow rate of 25 l/s and 
maximum wellhead pressure of 8 MPa. A total number of 69 induced seismic events were 
detected (Figure 10), the strongest event exhibiting magnitude ML=0.8 corresponding to a 
slipped surface in the order of tens to a hundred meters.  

 
Figure 10: Wellhead pressure (brown) and magnitude of seismic events (blue squares) induced during the short UD-1 
injection test. 






















































































