
Tracers are widely used by the energy industry to understand fluid transport in the sub-surface. 

While molecular tracers have been successfully employed for many years, they are sometimes 

ineffective. Novel tracers including nano-particle based ones, such as those that are labelled 

by DNA fragments, could overcome some limitations of the molecular ones. For example, they 

could be easily identified. However, experimental observations show that particle-based tracers 

transport across pore networks much faster than molecular tracers do. This suggests that the 

particle tracers only sample a portion of the pore network. However, it is also observed that 

only a small fraction of the particles are recovered once they are injected in pore networks. 

This could be due to preferential adsorption on the pore surfaces, or entrapment in some pores 

within the material. To elucidate the possible physical phenomena experienced by molecular 

vs. particle tracers, we perform the finite element method simulations with the Lagrangian 

approach and Eulerian approach. The results are discussed here qualitatively in relation to 

experimental observations from lab-based core flooding experiments.
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Å E:

Size effect on recovery is consistent 

qualitatively and quantitatively in core-

scale simulations and experiments:

1. Recovery is non-monotonically 

size-dependent.

2. Molecular tracers are recovered 

less than 159 nm sized particle 

tracers.

3. Beyond 159 nm, the increase of 

particle size decreases particle 

tracersô recovery.

D

ÅA: Larger particles move faster 

and break through PM earlier. 

(Do not sample the whole PM) 

ÅB: Peak concentration is not size-

dependent.

ÅC: Concentration during tailing 

determines recovery. 

ÅD:

1. Size effect on recovery is 

consistent qualitatively in 

pore-scale and core-scale 

simulations.

2. Recovery differences are 

scale-dependent.

(Lagrangian approach)

Lower permeability causes later BT, lower peak, and tailing. 

Surface charge may not 

affect recovery 

significantly, also indicated 

by experiments[1].
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